saaara commited on
Commit
deb131f
·
verified ·
1 Parent(s): a4b9553

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -9
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  import gradio as gr
3
  import numpy as np
4
  import pandas as pd
@@ -7,10 +6,8 @@ import tensorflow as tf
7
  # Load the trained model
8
  model = tf.keras.models.load_model('real_estate_price_prediction_model.h5')
9
 
10
-
11
-
12
  # Load the original dataset to get unique categories for 'secteur' and 'city'
13
- original_df = pd.read_excel('Moroccan Real Estate Price Clean Dataset .xlsx') # Replace with your dataset path
14
 
15
  # Get unique categories for 'secteur' and 'city'
16
  unique_secteurs = original_df['secteur'].unique()
@@ -28,7 +25,7 @@ def preprocess_input(user_input, columns, unique_secteurs, unique_cities):
28
  input_array = np.zeros((1, total_features), dtype=np.float64)
29
 
30
  # Update numerical features
31
- numerical_features = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_Nouveau', 'etat_À rénover']
32
  for feature in numerical_features:
33
  input_array[0, columns.index(feature)] = user_input[feature]
34
 
@@ -40,14 +37,27 @@ def preprocess_input(user_input, columns, unique_secteurs, unique_cities):
40
  return input_array
41
 
42
  # Function to predict price based on user input
43
- def predict_price(user_input):
44
  # Preprocess the user input
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  input_array = preprocess_input(user_input, columns, unique_secteurs, unique_cities)
46
 
47
  # Make prediction using the model
48
  predicted_price = model.predict(input_array)
49
 
50
- return predicted_price[0][0]
51
 
52
  # Gradio interface setup
53
  interface = gr.Interface(
@@ -65,8 +75,8 @@ interface = gr.Interface(
65
  gr.Textbox(label=f"Enter value for 'secteur'", type="text"),
66
  gr.Textbox(label=f"Enter value for 'city'", type="text")
67
  ],
68
- outputs=gr.Textbox(label="Predicted Price:", interactive=False)
69
  )
70
 
71
  # Launch the Gradio interface
72
- interface.launch(share=False, debug=False)
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import pandas as pd
 
6
  # Load the trained model
7
  model = tf.keras.models.load_model('real_estate_price_prediction_model.h5')
8
 
 
 
9
  # Load the original dataset to get unique categories for 'secteur' and 'city'
10
+ original_df = pd.read_excel('/content/Moroccan Real Estate Price Clean Dataset .xlsx') # Replace with your dataset path
11
 
12
  # Get unique categories for 'secteur' and 'city'
13
  unique_secteurs = original_df['secteur'].unique()
 
25
  input_array = np.zeros((1, total_features), dtype=np.float64)
26
 
27
  # Update numerical features
28
+ numerical_features = ['surface', 'pieces', 'chambres', 'sdb', 'age', 'etage', 'etat_Bon état', 'etat_À rénover']
29
  for feature in numerical_features:
30
  input_array[0, columns.index(feature)] = user_input[feature]
31
 
 
37
  return input_array
38
 
39
  # Function to predict price based on user input
40
+ def predict_price(surface, pieces, chambres, sdb, age, etage, etat_Bon_état, etat_Nouveau, etat_À_rénover, secteur, city):
41
  # Preprocess the user input
42
+ user_input = {
43
+ 'surface': surface,
44
+ 'pieces': pieces,
45
+ 'chambres': chambres,
46
+ 'sdb': sdb,
47
+ 'age': age,
48
+ 'etage': etage,
49
+ 'etat_Bon état': etat_Bon_état,
50
+ 'etat_Nouveau': etat_Nouveau,
51
+ 'etat_À rénover': etat_À_rénover,
52
+ 'secteur': secteur,
53
+ 'city': city
54
+ }
55
  input_array = preprocess_input(user_input, columns, unique_secteurs, unique_cities)
56
 
57
  # Make prediction using the model
58
  predicted_price = model.predict(input_array)
59
 
60
+ return f"Predicted price: {predicted_price[0][0]}"
61
 
62
  # Gradio interface setup
63
  interface = gr.Interface(
 
75
  gr.Textbox(label=f"Enter value for 'secteur'", type="text"),
76
  gr.Textbox(label=f"Enter value for 'city'", type="text")
77
  ],
78
+ outputs=gr.Textbox(label="Predicted Price(Dh):", interactive=False)
79
  )
80
 
81
  # Launch the Gradio interface
82
+ interface.launch(share=False, debug=False)