Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import tensorflow as tf
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
model = tf.keras.models.load_model('real_estate_price_prediction_model.h5')
|
@@ -59,11 +60,14 @@ def predict_price(surface, pieces, chambres, sdb, age, etage, etat_Bon_état, et
|
|
59 |
|
60 |
return f"Predicted price: {predicted_price[0][0]}"
|
61 |
|
|
|
|
|
|
|
62 |
# Gradio interface setup
|
63 |
interface = gr.Interface(
|
64 |
fn=predict_price, # The function to be called with user input
|
65 |
inputs=[
|
66 |
-
gr.Slider(label=f"Enter value for 'surface'", minimum=0, maximum=500, step=1),
|
67 |
gr.Slider(label=f"Enter value for 'pieces'", minimum=0, maximum=15, step=1),
|
68 |
gr.Slider(label=f"Enter value for 'chambres'", minimum=0, maximum=10, step=1),
|
69 |
gr.Slider(label=f"Enter value for 'sdb'", minimum=0, maximum=5, step=1),
|
@@ -75,7 +79,14 @@ interface = gr.Interface(
|
|
75 |
gr.Textbox(label=f"Enter value for 'secteur'", type="text"),
|
76 |
gr.Textbox(label=f"Enter value for 'city'", type="text")
|
77 |
],
|
78 |
-
outputs=gr.Textbox(label="Predicted Price(Dh):", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
|
81 |
# Launch the Gradio interface
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import tensorflow as tf
|
5 |
+
from IPython.display import HTML
|
6 |
|
7 |
# Load the trained model
|
8 |
model = tf.keras.models.load_model('real_estate_price_prediction_model.h5')
|
|
|
60 |
|
61 |
return f"Predicted price: {predicted_price[0][0]}"
|
62 |
|
63 |
+
# Create HTML code to display an image
|
64 |
+
image_html = "<img src='/content/Capture d’écran 2024-01-28 155359.jpg' style='max-width:100%;'>"
|
65 |
+
|
66 |
# Gradio interface setup
|
67 |
interface = gr.Interface(
|
68 |
fn=predict_price, # The function to be called with user input
|
69 |
inputs=[
|
70 |
+
gr.Slider(label=f"Enter value for 'surface(m²)'", minimum=0, maximum=500, step=1),
|
71 |
gr.Slider(label=f"Enter value for 'pieces'", minimum=0, maximum=15, step=1),
|
72 |
gr.Slider(label=f"Enter value for 'chambres'", minimum=0, maximum=10, step=1),
|
73 |
gr.Slider(label=f"Enter value for 'sdb'", minimum=0, maximum=5, step=1),
|
|
|
79 |
gr.Textbox(label=f"Enter value for 'secteur'", type="text"),
|
80 |
gr.Textbox(label=f"Enter value for 'city'", type="text")
|
81 |
],
|
82 |
+
outputs=gr.Textbox(label="Predicted Price(Dh):", interactive=False),
|
83 |
+
title="Real Estate Price Prediction",
|
84 |
+
description="Enter property details to predict its price.",
|
85 |
+
examples=[
|
86 |
+
[250, 5, 3, 2, 10, 3, 1, 0, 0, "'Secteur_A'", "'City_X'"],
|
87 |
+
[150, 4, 2, 1, 5, 2, 1, 0, 0, "'Secteur_B'", "'City_Y'"]
|
88 |
+
],
|
89 |
+
theme="compact", # Compact theme for a cleaner look
|
90 |
)
|
91 |
|
92 |
# Launch the Gradio interface
|