mc-llava-3b / app.py
visheratin's picture
Update app.py
b7864ca verified
raw
history blame
3.86 kB
from __future__ import annotations
import spaces
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer
import hashlib
import os
from transformers import AutoModel, AutoProcessor
import torch
model = AutoModel.from_pretrained("visheratin/MC-LLaVA-3b", torch_dtype=torch.float16, trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained("visheratin/MC-LLaVA-3b", trust_remote_code=True)
if torch.cuda.is_available():
DEVICE = "cuda"
DTYPE = torch.float16
else:
DEVICE = "cpu"
DTYPE = torch.float32
def cached_vision_process(image, max_crops, num_tokens):
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
cache_path = f"visual_cache/{image_hash}-{max_crops}-{num_tokens}.pt"
if os.path.exists(cache_path):
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
else:
processor_outputs = processor.image_processor([image], max_crops)
pixel_values = processor_outputs["pixel_values"]
pixel_values = [
value.to(model.device).to(model.dtype) for value in pixel_values
]
coords = processor_outputs["coords"]
coords = [value.to(model.device).to(model.dtype) for value in coords]
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
image_features = model.multi_modal_projector(image_outputs)
os.makedirs("visual_cache", exist_ok=True)
torch.save(image_features, cache_path)
return image_features.to(DEVICE, dtype=DTYPE)
@spaces.GPU(duration=20)
def answer_question(image, question, max_crops, num_tokens):
prompt = f"""<|im_start|>user
<image>
{question}<|im_end|>
<|im_start|>assistant
"""
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
with torch.inference_mode():
inputs = processor(prompt, [image], model, max_crops=max_crops, num_tokens=num_tokens)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"image_features": inputs["image_features"],
"streamer": streamer,
"max_length": 1000,
"use_cache": True,
"eos_token_id": processor.tokenizer.eos_token_id,
"pad_token_id": processor.tokenizer.eos_token_id,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
if len(buffer) > 1:
yield buffer
with gr.Blocks() as demo:
gr.HTML("<h1 class='gradio-heading'><center>MC-LLaVA 3B</center></h1>")
gr.HTML(
"<center><p class='gradio-sub-heading'>MC-LLaVA 3B is a model that can answer questions about small details in high-resolution images. Check out the <a href='https://huggingface.co/visheratin/MC-LLaVA-3b'>model card</a> for more details. If you have any questions or ideas hot to make the model better, <a href='https://x.com/visheratin'>let me know</a></p></center>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Question", placeholder="e.g. What is this?", scale=4
)
submit = gr.Button(
"Submit",
scale=1,
)
with gr.Row():
max_crops = gr.Slider(minimum=0, maximum=200, step=5, value=0, label="Max crops")
num_tokens = gr.Slider(minimum=728, maximum=2184, step=10, value=728, label="Number of image tokens")
with gr.Row():
img = gr.Image(type="pil", label="Upload or Drag an Image")
output = gr.TextArea(label="Answer")
submit.click(answer_question, [img, prompt, max_crops, num_tokens], output)
prompt.submit(answer_question, [img, prompt, max_crops, num_tokens], output)
demo.queue().launch(debug=True)