s2049's picture
Update app.py
9e599fd verified
# app.py
import gradio as gr
from transformers import pipeline, AutoModel, AutoProcessor
import torch
import os
import numpy as np
from PIL import Image
# Initialize models (outside process function)
summarizer = pipeline("summarization", "csebuetnlp/mT5_multilingual_XLSum")
translator_ar2en = pipeline("translation_ar_to_en", "Helsinki-NLP/opus-mt-ar-en")
clip_model = AutoModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Image preprocessing
def precompute_embeddings(image_dir="images"):
image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
embeddings = []
for path in image_paths:
image = Image.open(path)
inputs = clip_processor(images=image, return_tensors="pt")
with torch.no_grad():
embeddings.append(clip_model.get_image_features(**inputs))
return image_paths, torch.cat(embeddings)
image_paths, image_embeddings = precompute_embeddings()
def process(input_text, language):
# Text summarization
summary = summarizer(input_text, max_length=150, min_length=30)[0]['summary_text']
# Translation if Arabic
if language == "Arabic":
translated = translator_ar2en(summary)[0]['translation_text']
query_text = translated
else:
query_text = summary
# Text-image retrieval
text_inputs = clip_processor(
text=query_text,
return_tensors="pt",
padding=True,
truncation=True
)
with torch.no_grad():
text_emb = clip_model.get_text_features(**text_inputs)
similarities = (text_emb @ image_embeddings.T).softmax(dim=-1)
top_indices = similarities.topk(3).indices.numpy()
results = [image_paths[i] for i in top_indices]
return summary, translated if language == "Arabic" else "", results
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🌍 Multi-Task AI: Summarization & Image Retrieval")
with gr.Row():
lang = gr.Dropdown(["English", "Arabic"], label="Input Language")
text_input = gr.Textbox(label="Input Text", lines=5)
with gr.Row():
summary_out = gr.Textbox(label="Summary")
trans_out = gr.Textbox(label="English Query Text", visible=False)
gallery = gr.Gallery(label="Retrieved Images", columns=3)
submit = gr.Button("Process", variant="primary")
def toggle_translation(lang):
return gr.update(visible=lang == "Arabic")
lang.change(toggle_translation, lang, trans_out)
submit.click(process, [text_input, lang], [summary_out, trans_out, gallery])
demo.launch()