Spaces:
Sleeping
Sleeping
s-a-malik
commited on
Commit
·
b874271
1
Parent(s):
f4748d0
debugging
Browse files- app_sep.py +189 -0
- debug.ipynb +233 -0
- model/{spiece.model → 20240625-131035_demo.pkl} +2 -2
- model/config.json +0 -40
- model/pytorch_model.bin +0 -3
- model/special_tokens_map.json +0 -9
- model/tokenizer_config.json +0 -17
app_sep.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle as pkl
|
3 |
+
from pathlib import Path
|
4 |
+
from threading import Thread
|
5 |
+
from typing import List, Optional, Tuple, Iterator
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
+
|
12 |
+
|
13 |
+
MAX_MAX_NEW_TOKENS = 2048
|
14 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
15 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
16 |
+
|
17 |
+
DESCRIPTION = """\
|
18 |
+
# Llama-2 7B Chat with Streamable Semantic Uncertainty Probe
|
19 |
+
This Space demonstrates the Llama-2-7b-chat model with an added semantic uncertainty probe.
|
20 |
+
The highlighted text shows the model's uncertainty in real-time, with more intense yellow indicating higher uncertainty.
|
21 |
+
"""
|
22 |
+
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
model_id = "meta-llama/Llama-2-7b-chat-hf"
|
25 |
+
# TODO load the full model?
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
28 |
+
tokenizer.use_default_system_prompt = False
|
29 |
+
|
30 |
+
# load the probe data
|
31 |
+
# TODO load accuracy and SE probe and compare in different tabs
|
32 |
+
with open("./model/20240625-131035_demo.pkl", "rb") as f:
|
33 |
+
probe_data = pkl.load(f)
|
34 |
+
# take the NQ open one
|
35 |
+
probe_data = probe_data[-2]
|
36 |
+
model = probe_data['t_bmodel']
|
37 |
+
layer_range = probe_data['sep_layer_range']
|
38 |
+
acc_model = probe_data['t_amodel']
|
39 |
+
acc_layer_range = probe_data['ap_layer_range']
|
40 |
+
|
41 |
+
def generate(
|
42 |
+
message: str,
|
43 |
+
chat_history: List[Tuple[str, str]],
|
44 |
+
system_prompt: str,
|
45 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
46 |
+
temperature: float = 0.6,
|
47 |
+
top_p: float = 0.9,
|
48 |
+
top_k: int = 50,
|
49 |
+
repetition_penalty: float = 1.2,
|
50 |
+
) -> Iterator[str]:
|
51 |
+
conversation = []
|
52 |
+
if system_prompt:
|
53 |
+
conversation.append({"role": "system", "content": system_prompt})
|
54 |
+
for user, assistant in chat_history:
|
55 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
56 |
+
conversation.append({"role": "user", "content": message})
|
57 |
+
|
58 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
59 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
60 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
61 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
62 |
+
input_ids = input_ids.to(model.device)
|
63 |
+
|
64 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
65 |
+
generation_kwargs = dict(
|
66 |
+
input_ids=input_ids,
|
67 |
+
max_new_tokens=max_new_tokens,
|
68 |
+
do_sample=True,
|
69 |
+
top_p=top_p,
|
70 |
+
top_k=top_k,
|
71 |
+
temperature=temperature,
|
72 |
+
repetition_penalty=repetition_penalty,
|
73 |
+
streamer=streamer,
|
74 |
+
output_hidden_states=True,
|
75 |
+
return_dict_in_generate=True,
|
76 |
+
)
|
77 |
+
|
78 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
79 |
+
thread.start()
|
80 |
+
|
81 |
+
generated_text = ""
|
82 |
+
highlighted_text = ""
|
83 |
+
for output in streamer:
|
84 |
+
print(output)
|
85 |
+
generated_text += output
|
86 |
+
|
87 |
+
yield generated_text
|
88 |
+
|
89 |
+
# this is doing it twice... just do autoregressive generation instead
|
90 |
+
for new_text in streamer:
|
91 |
+
generated_text += new_text
|
92 |
+
current_input_ids = tokenizer.encode(generated_text, return_tensors="pt").to(model.device)
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = model(current_input_ids, output_hidden_states=True)
|
96 |
+
hidden = outputs.hidden_states
|
97 |
+
# Stack second last token embeddings from all layers
|
98 |
+
# if len(hidden) == 1: # FIX: runtime error for mistral-7b on bioasq
|
99 |
+
# sec_last_input = hidden[0]
|
100 |
+
# elif ((n_generated - 2) >= len(hidden)):
|
101 |
+
# sec_last_input = hidden[-2]
|
102 |
+
# else:
|
103 |
+
# sec_last_input = hidden[n_generated - 2]
|
104 |
+
last_hidden_state = torch.stack([layer[:, -1, :].cpu() for layer in hidden[-1]]).cpu().numpy()
|
105 |
+
# print(sec_last_token_embedding.shape)
|
106 |
+
# last_hidden_state = outputs.hidden_states[-1][:, -1, :].cpu().numpy()
|
107 |
+
print(last_hidden_state.shape)
|
108 |
+
# TODO potentially need to only compute uncertainty for the last token in sentence?
|
109 |
+
|
110 |
+
# concatenate the hidden states from the specified layers
|
111 |
+
probe_input = np.concatenate(last_hidden_state[layer_range], axis=1)
|
112 |
+
print(probe_input.shape)
|
113 |
+
uncertainty_score = model.predict(probe_input)
|
114 |
+
print(uncertainty_score)
|
115 |
+
new_highlighted_text = highlight_text(new_text, uncertainty_score[0])
|
116 |
+
print(new_highlighted_text)
|
117 |
+
highlighted_text += new_highlighted_text
|
118 |
+
|
119 |
+
yield highlighted_text
|
120 |
+
|
121 |
+
|
122 |
+
def highlight_text(text: str, uncertainty_score: float) -> str:
|
123 |
+
if uncertainty_score > 0:
|
124 |
+
html_color = "#%02X%02X%02X" % (
|
125 |
+
255,
|
126 |
+
int(255 * (1 - uncertainty_score)),
|
127 |
+
int(255 * (1 - uncertainty_score)),
|
128 |
+
)
|
129 |
+
else:
|
130 |
+
html_color = "#%02X%02X%02X" % (
|
131 |
+
int(255 * (1 + uncertainty_score)),
|
132 |
+
255,
|
133 |
+
int(255 * (1 + uncertainty_score)),
|
134 |
+
)
|
135 |
+
return '<span style="background-color: {}; color: black">{}</span>'.format(
|
136 |
+
html_color, text
|
137 |
+
)
|
138 |
+
chat_interface = gr.ChatInterface(
|
139 |
+
fn=generate,
|
140 |
+
additional_inputs=[
|
141 |
+
gr.Textbox(label="System prompt", lines=6),
|
142 |
+
gr.Slider(
|
143 |
+
label="Max new tokens",
|
144 |
+
minimum=1,
|
145 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
146 |
+
step=1,
|
147 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
148 |
+
),
|
149 |
+
gr.Slider(
|
150 |
+
label="Temperature",
|
151 |
+
minimum=0.1,
|
152 |
+
maximum=4.0,
|
153 |
+
step=0.1,
|
154 |
+
value=0.6,
|
155 |
+
),
|
156 |
+
gr.Slider(
|
157 |
+
label="Top-p (nucleus sampling)",
|
158 |
+
minimum=0.05,
|
159 |
+
maximum=1.0,
|
160 |
+
step=0.05,
|
161 |
+
value=0.9,
|
162 |
+
),
|
163 |
+
gr.Slider(
|
164 |
+
label="Top-k",
|
165 |
+
minimum=1,
|
166 |
+
maximum=1000,
|
167 |
+
step=1,
|
168 |
+
value=50,
|
169 |
+
),
|
170 |
+
gr.Slider(
|
171 |
+
label="Repetition penalty",
|
172 |
+
minimum=1.0,
|
173 |
+
maximum=2.0,
|
174 |
+
step=0.05,
|
175 |
+
value=1.2,
|
176 |
+
),
|
177 |
+
],
|
178 |
+
stop_btn=None,
|
179 |
+
examples=[
|
180 |
+
["What is the capital of France?"],
|
181 |
+
["Explain the theory of relativity in simple terms."],
|
182 |
+
["Write a short poem about artificial intelligence."]
|
183 |
+
],
|
184 |
+
title="Llama-2 7B Chat with Streamable Semantic Uncertainty Probe",
|
185 |
+
description=DESCRIPTION,
|
186 |
+
)
|
187 |
+
|
188 |
+
if __name__ == "__main__":
|
189 |
+
chat_interface.launch()
|
debug.ipynb
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n",
|
13 |
+
"Intel MKL WARNING: Support of Intel(R) Streaming SIMD Extensions 4.2 (Intel(R) SSE4.2) enabled only processors has been deprecated. Intel oneAPI Math Kernel Library 2025.0 will require Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions.\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "stderr",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"/Users/shreshth/anaconda3/envs/llm-test/lib/python3.11/site-packages/threadpoolctl.py:1214: RuntimeWarning: \n",
|
21 |
+
"Found Intel OpenMP ('libiomp') and LLVM OpenMP ('libomp') loaded at\n",
|
22 |
+
"the same time. Both libraries are known to be incompatible and this\n",
|
23 |
+
"can cause random crashes or deadlocks on Linux when loaded in the\n",
|
24 |
+
"same Python program.\n",
|
25 |
+
"Using threadpoolctl may cause crashes or deadlocks. For more\n",
|
26 |
+
"information and possible workarounds, please see\n",
|
27 |
+
" https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md\n",
|
28 |
+
"\n",
|
29 |
+
" warnings.warn(msg, RuntimeWarning)\n"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"data": {
|
34 |
+
"text/plain": [
|
35 |
+
"{'name': 'nq',\n",
|
36 |
+
" 't_bmodel': LogisticRegression(),\n",
|
37 |
+
" 't_amodel': LogisticRegression(),\n",
|
38 |
+
" 'sep_layer_range': (27, 32),\n",
|
39 |
+
" 'ap_layer_range': (17, 22)}"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
"execution_count": 1,
|
43 |
+
"metadata": {},
|
44 |
+
"output_type": "execute_result"
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"source": [
|
48 |
+
"# test probe loading \n",
|
49 |
+
"import pickle as pkl\n",
|
50 |
+
"import numpy as np\n",
|
51 |
+
"import sklearn \n",
|
52 |
+
"from sklearn import linear_model\n",
|
53 |
+
"import os\n",
|
54 |
+
"os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"\n",
|
55 |
+
"\n",
|
56 |
+
"# load the probe data\n",
|
57 |
+
"with open(\"./model/20240625-131035_demo.pkl\", \"rb\") as f:\n",
|
58 |
+
" probe_data = pkl.load(f)\n",
|
59 |
+
"# take the NQ open one\n",
|
60 |
+
"probe_data = probe_data[-2]\n",
|
61 |
+
"probe_data"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 2,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"probe = probe_data['t_bmodel']\n",
|
71 |
+
"layer_range = probe_data['sep_layer_range']"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": 5,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [
|
79 |
+
{
|
80 |
+
"data": {
|
81 |
+
"application/vnd.jupyter.widget-view+json": {
|
82 |
+
"model_id": "1c0e30b73cab48069e985203c598a9b0",
|
83 |
+
"version_major": 2,
|
84 |
+
"version_minor": 0
|
85 |
+
},
|
86 |
+
"text/plain": [
|
87 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"metadata": {},
|
91 |
+
"output_type": "display_data"
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"source": [
|
95 |
+
"import torch\n",
|
96 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer\n",
|
97 |
+
"\n",
|
98 |
+
"model_id = \"meta-llama/Llama-2-7b-chat-hf\"\n",
|
99 |
+
"model = AutoModelForCausalLM.from_pretrained(model_id, device_map=\"cpu\")\n",
|
100 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
101 |
+
"tokenizer.use_default_system_prompt = False"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": 8,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"name": "stdout",
|
111 |
+
"output_type": "stream",
|
112 |
+
"text": [
|
113 |
+
"tensor([[ 1, 518, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492,\n",
|
114 |
+
" 526, 263, 8444, 20255, 29889, 13, 29966, 829, 14816, 29903,\n",
|
115 |
+
" 6778, 13, 13, 5816, 338, 278, 7483, 310, 3444, 29973,\n",
|
116 |
+
" 518, 29914, 25580, 29962]]) torch.Size([1, 34])\n"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"name": "stderr",
|
121 |
+
"output_type": "stream",
|
122 |
+
"text": [
|
123 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)\n"
|
124 |
+
]
|
125 |
+
}
|
126 |
+
],
|
127 |
+
"source": [
|
128 |
+
"from threading import Thread\n",
|
129 |
+
"\n",
|
130 |
+
"system_prompt = \"You are a helpful assistant.\"\n",
|
131 |
+
"message = \"what is the capital of France?\"\n",
|
132 |
+
"max_new_tokens = 100\n",
|
133 |
+
"top_p = 0.9\n",
|
134 |
+
"top_k = 50\n",
|
135 |
+
"temperature = 0.7\n",
|
136 |
+
"repetition_penalty = 1.2\n",
|
137 |
+
"\n",
|
138 |
+
"conversation = []\n",
|
139 |
+
"\n",
|
140 |
+
"conversation.append({\"role\": \"system\", \"content\": system_prompt})\n",
|
141 |
+
"conversation.append({\"role\": \"user\", \"content\": message})\n",
|
142 |
+
"input_ids = tokenizer.apply_chat_template(conversation, return_tensors=\"pt\")\n",
|
143 |
+
"input_ids = input_ids.to(model.device)\n",
|
144 |
+
"print(input_ids, input_ids.shape)\n",
|
145 |
+
"streamer = TextIteratorStreamer(tokenizer, timeout=1000.0, skip_prompt=True, skip_special_tokens=True)\n",
|
146 |
+
"generation_kwargs = dict(\n",
|
147 |
+
" input_ids=input_ids,\n",
|
148 |
+
" max_new_tokens=max_new_tokens,\n",
|
149 |
+
" do_sample=True,\n",
|
150 |
+
" top_p=top_p,\n",
|
151 |
+
" top_k=top_k,\n",
|
152 |
+
" temperature=temperature,\n",
|
153 |
+
" repetition_penalty=repetition_penalty,\n",
|
154 |
+
" streamer=streamer,\n",
|
155 |
+
" output_hidden_states=True,\n",
|
156 |
+
" return_dict_in_generate=True,\n",
|
157 |
+
")\n",
|
158 |
+
"\n",
|
159 |
+
"thread = Thread(target=model.generate, kwargs=generation_kwargs)\n",
|
160 |
+
"thread.start()\n",
|
161 |
+
"\n",
|
162 |
+
"generated_text = \"\"\n",
|
163 |
+
"highlighted_text = \"\"\n",
|
164 |
+
"\n",
|
165 |
+
"for new_text in streamer:\n",
|
166 |
+
" print(new_text)\n",
|
167 |
+
" generated_text += new_text\n",
|
168 |
+
" current_input_ids = tokenizer.encode(generated_text, return_tensors=\"pt\").to(model.device)\n",
|
169 |
+
" print(current_input_ids, current_input_ids.shape)\n",
|
170 |
+
" with torch.no_grad():\n",
|
171 |
+
" outputs = model(current_input_ids, output_hidden_states=True)\n",
|
172 |
+
" print(outputs)\n",
|
173 |
+
" hidden = outputs.hidden_states \n",
|
174 |
+
" print(hidden.shape)\n",
|
175 |
+
" # Stack second last token embeddings from all layers \n",
|
176 |
+
" # if len(hidden) == 1: # FIX: runtime error for mistral-7b on bioasq\n",
|
177 |
+
" # sec_last_input = hidden[0]\n",
|
178 |
+
" # elif ((n_generated - 2) >= len(hidden)):\n",
|
179 |
+
" # sec_last_input = hidden[-2]\n",
|
180 |
+
" # else:\n",
|
181 |
+
" # sec_last_input = hidden[n_generated - 2]\n",
|
182 |
+
" # sec_last_token_embedding = torch.stack([layer[:, -1, :].cpu() for layer in sec_last_input])\n",
|
183 |
+
" # print(sec_last_token_embedding.shape)\n",
|
184 |
+
" last_hidden_state = outputs.hidden_states[-1][:, -1, :].cpu().numpy()\n",
|
185 |
+
" print(last_hidden_state.shape) \n",
|
186 |
+
" # TODO potentially need to only compute uncertainty for the last token in sentence?\n"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [],
|
194 |
+
"source": [
|
195 |
+
"# concat hidden states\n",
|
196 |
+
"\n",
|
197 |
+
"\n",
|
198 |
+
"hidden_states = np.concatenate(np.array(hidden_states)[layer_range], axis=1)\n",
|
199 |
+
"# predict with probe\n",
|
200 |
+
"pred = probe.predict(hidden_states)\n",
|
201 |
+
"print(pred)"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"cell_type": "code",
|
206 |
+
"execution_count": null,
|
207 |
+
"metadata": {},
|
208 |
+
"outputs": [],
|
209 |
+
"source": []
|
210 |
+
}
|
211 |
+
],
|
212 |
+
"metadata": {
|
213 |
+
"kernelspec": {
|
214 |
+
"display_name": "llm-test",
|
215 |
+
"language": "python",
|
216 |
+
"name": "python3"
|
217 |
+
},
|
218 |
+
"language_info": {
|
219 |
+
"codemirror_mode": {
|
220 |
+
"name": "ipython",
|
221 |
+
"version": 3
|
222 |
+
},
|
223 |
+
"file_extension": ".py",
|
224 |
+
"mimetype": "text/x-python",
|
225 |
+
"name": "python",
|
226 |
+
"nbconvert_exporter": "python",
|
227 |
+
"pygments_lexer": "ipython3",
|
228 |
+
"version": "3.11.4"
|
229 |
+
}
|
230 |
+
},
|
231 |
+
"nbformat": 4,
|
232 |
+
"nbformat_minor": 2
|
233 |
+
}
|
model/{spiece.model → 20240625-131035_demo.pkl}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c48fbd05e51c7b72d97012266d3f483198ec99ce66ed9611eefc347ab2e21360
|
3 |
+
size 1313378
|
model/config.json
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "rinna/japanese-gpt2-medium",
|
3 |
-
"activation_function": "gelu_new",
|
4 |
-
"architectures": [
|
5 |
-
"GPT2LMHeadModel"
|
6 |
-
],
|
7 |
-
"attn_pdrop": 0.1,
|
8 |
-
"bos_token_id": 1,
|
9 |
-
"embd_pdrop": 0.1,
|
10 |
-
"eos_token_id": 2,
|
11 |
-
"gradient_checkpointing": false,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"layer_norm_epsilon": 1e-05,
|
14 |
-
"model_type": "gpt2",
|
15 |
-
"n_ctx": 1024,
|
16 |
-
"n_embd": 1024,
|
17 |
-
"n_head": 16,
|
18 |
-
"n_inner": 4096,
|
19 |
-
"n_layer": 24,
|
20 |
-
"n_positions": 1024,
|
21 |
-
"reorder_and_upcast_attn": false,
|
22 |
-
"resid_pdrop": 0.1,
|
23 |
-
"scale_attn_by_inverse_layer_idx": false,
|
24 |
-
"scale_attn_weights": true,
|
25 |
-
"summary_activation": null,
|
26 |
-
"summary_first_dropout": 0.1,
|
27 |
-
"summary_proj_to_labels": true,
|
28 |
-
"summary_type": "cls_index",
|
29 |
-
"summary_use_proj": true,
|
30 |
-
"task_specific_params": {
|
31 |
-
"text-generation": {
|
32 |
-
"do_sample": true,
|
33 |
-
"max_length": 50
|
34 |
-
}
|
35 |
-
},
|
36 |
-
"torch_dtype": "float32",
|
37 |
-
"transformers_version": "4.25.1",
|
38 |
-
"use_cache": true,
|
39 |
-
"vocab_size": 32000
|
40 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:21035c9390e20b77578237469586e51d2275cf889d1c3418c4b57da8c67160c6
|
3 |
-
size 1369783965
|
|
|
|
|
|
|
|
model/special_tokens_map.json
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<s>",
|
3 |
-
"cls_token": "[CLS]",
|
4 |
-
"eos_token": "</s>",
|
5 |
-
"mask_token": "[MASK]",
|
6 |
-
"pad_token": "[PAD]",
|
7 |
-
"sep_token": "[SEP]",
|
8 |
-
"unk_token": "<unk>"
|
9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/tokenizer_config.json
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [],
|
3 |
-
"bos_token": "<s>",
|
4 |
-
"cls_token": "[CLS]",
|
5 |
-
"do_lower_case": true,
|
6 |
-
"eos_token": "</s>",
|
7 |
-
"extra_ids": 0,
|
8 |
-
"mask_token": "[MASK]",
|
9 |
-
"model_max_length": 1000000000000000019884624838656,
|
10 |
-
"name_or_path": "rinna/japanese-gpt2-medium",
|
11 |
-
"pad_token": "[PAD]",
|
12 |
-
"sep_token": "[SEP]",
|
13 |
-
"sp_model_kwargs": {},
|
14 |
-
"special_tokens_map_file": "/Users/agiats/.cache/huggingface/hub/models--rinna--japanese-gpt2-medium/snapshots/f464b76739c884d8b0479a0a7705b7fa71c3fd5a/special_tokens_map.json",
|
15 |
-
"tokenizer_class": "T5Tokenizer",
|
16 |
-
"unk_token": "<unk>"
|
17 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|