ryo2 commited on
Commit
04eb3e6
·
1 Parent(s): 45217e8

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +66 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ import shutil
4
+
5
+ import gradio as gr
6
+ import matplotlib.cm as cm
7
+ import pandas as pd
8
+ import japanize_matplotlib
9
+ import numpy as np
10
+ import matplotlib.pyplot as plt
11
+ import seaborn as sns
12
+
13
+ def all_likelihood_plot(csv_file_name, tmpdir):
14
+ df = pd.read_csv(csv_file_name, header=[1, 2])
15
+ df = df.drop(df.columns[[0]], axis=1)
16
+ columns = df.columns.droplevel(1)
17
+
18
+ # 重複を削除
19
+ columns = columns.drop_duplicates()
20
+ likelihood = [df[x]["likelihood"] for x in columns]
21
+ a = pd.DataFrame(likelihood, index=columns).T
22
+
23
+ #平均値を求める
24
+ point_average = a.mean()
25
+ parts = ["指節1", "指節2", "指節3", "指節4", "指節5", "指節6", "指節7", "指節8", "指節9",
26
+ "指節10", "指節11", "指節12", "指節13", "指節14", "触角(右)", "触角(左)", "頭部", "腹尾節"]
27
+
28
+ # カラーマップの設定
29
+ a.columns = parts
30
+ cmap = plt.get_cmap('rainbow')
31
+ # バイオリン図のプロット
32
+ sns.set(style="whitegrid",font="IPAexGothic")
33
+ fig, ax = plt.subplots()
34
+
35
+ # データをバイオリンプロットで描画
36
+ sns.violinplot(data=a, palette=[cmap(i)
37
+ for i in np.linspace(0, 1, len(columns))], ax=ax,inner=None)
38
+
39
+ # 横軸のラベルを重ならないように
40
+ plt.xticks(rotation=65)
41
+
42
+ ax.set_title('付属肢別の尤度')
43
+ ax.set_xlabel('付属肢')
44
+ ax.set_ylabel('尤度')
45
+
46
+ #それぞれの要素の平均値をプロット
47
+ plt.scatter(x=parts, y=point_average, color='black', marker='x')
48
+
49
+ # 最大値を1に
50
+ plt.ylim(0, 1)
51
+
52
+ #ラベルがはみ出ないように
53
+ plt.tight_layout()
54
+
55
+ # グラフを表示
56
+ plt.savefig(f"likelihood.png", dpi=300)
57
+
58
+
59
+ def main(csv_file):
60
+ with tempfile.TemporaryDirectory(dir=".") as tmpdir:
61
+ all_likelihood_plot(csv_file, tmpdir)
62
+ return f"likelihood.png"
63
+
64
+
65
+ iface = gr.Interface(fn=main, inputs="file", outputs="image", title="尤度のグラフを作成します。")
66
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas
2
+ matplotlib
3
+ numpy
4
+ japanize_matplotlib
5
+ seaborn