rynmurdock's picture
init
c5ca37a
description: Train Causal LM on Yelp Dataset
auth:
# which virtual cluster you belong to (msrlabs, etc.). Everyone has access to "pnrsy".
vc: resrchprojvc6
# physical cluster to use (cam, gcr, rr1) or Azure clusters (eu1, eu2, etc.)
# cluster: rr2, eu2, eu1 et1
cluster: rr1 # eu2
# docker environment (vm) in which your job will run. we provide "generic" dockers
# with the main deep learning toolkit installed (PyTorch, TF, Chainer, etc.)
docker:
# image: philly/jobs/custom/generic-docker:py27
# registry: phillyregistry.azurecr.io
image: chunyl/pytorch-transformers:v0
registry: index.docker.io
storage:
_default:
#use_phillyfs: True
storage_account_name: textae
container_name: bigtextae
mount_path: /mnt/_default
code:
# local directory of the code. this will be uploaded to the server.
# $CONFIG_DIR is expanded to the directory of this config file
code_upload: False
remote_dir: code/
local_dir: $CONFIG_DIR/code
#data:
# data upload is not required for this example
#data_upload: False
search:
job_template:
name: gpt2_{experiment_name:s}_{bs_option:.0f}
sku: G8 # G4 # G1
command:
- pip install --user --editable .
- python examples/big_ae/run_lm_finetuning_baseline.py --output_dir ../output/philly_clm_yelp_gpt2 --dataset Yelp --model_type gpt2 --model_name_or_path gpt2 --do_train --train_data_file ../data/datasets/yelp_data/train.txt --do_eval --eval_data_file ../data/datasets/yelp_data/test.txt --per_gpu_train_batch_size {bs_option} --overwrite_output_dir
max_trials: 20
type: grid
params:
- name: bs_option
spec: discrete
values: [3] # [top,bottom]