Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""message_bottle.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1I47sLakpuwERGzn-XoNct67mwiDS1mQD | |
""" | |
import matplotlib.pyplot as plt | |
import matplotlib | |
import argparse | |
import glob | |
import logging | |
import os | |
import pickle | |
import random | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from tqdm import tqdm, trange | |
from types import SimpleNamespace | |
import sys | |
sys.path.append('./Optimus/code/examples/big_ae/') | |
sys.path.append('./Optimus/code/') | |
from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, BertConfig | |
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForLatentConnector | |
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer | |
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer | |
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer | |
from pytorch_transformers import BertForLatentConnector, BertTokenizer | |
from modules import VAE | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
torch.set_float32_matmul_precision('high') | |
from tqdm import tqdm | |
################################################ | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (vocabulary size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
""" | |
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits[indices_to_remove] = filter_value | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = filter_value | |
return logits | |
def sample_sequence_conditional(model, length, context, past=None, num_samples=1, temperature=1, top_k=0, top_p=0.0, device='cpu', decoder_tokenizer=None): | |
context = torch.tensor(context, dtype=torch.long, device=device) | |
context = context.unsqueeze(0).repeat(num_samples, 1) | |
generated = context | |
with torch.no_grad(): | |
while True: | |
# for _ in trange(length): | |
inputs = {'input_ids': generated, 'past': past} | |
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states) | |
next_token_logits = outputs[0][0, -1, :] / temperature | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1) | |
# pdb.set_trace() | |
if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]: | |
break | |
return generated | |
def latent_code_from_text(text,):# args): | |
tokenized1 = tokenizer_encoder.encode(text) | |
tokenized1 = [101] + tokenized1 + [102] | |
coded1 = torch.Tensor([tokenized1]) | |
coded1 =torch.Tensor.long(coded1) | |
with torch.no_grad(): | |
x0 = coded1 | |
x0 = x0.to('cuda') | |
pooled_hidden_fea = model_vae.encoder(x0, attention_mask=(x0 > 0).float())[1] | |
mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1) | |
latent_z = mean.squeeze(1) | |
coded_length = len(tokenized1) | |
return latent_z, coded_length | |
# args | |
def text_from_latent_code(latent_z): | |
past = latent_z | |
context_tokens = tokenizer_decoder.encode('<BOS>') | |
length = 128 # maximum length, but not used | |
out = sample_sequence_conditional( | |
model=model_vae.decoder, | |
context=context_tokens, | |
past=past, | |
length= length, # Chunyuan: Fix length; or use <EOS> to complete a sentence | |
temperature=.5, | |
top_k=100, | |
top_p=.95, | |
device='cuda', | |
decoder_tokenizer = tokenizer_decoder | |
) | |
text_x1 = tokenizer_decoder.decode(out[0,:].tolist(), clean_up_tokenization_spaces=True) | |
text_x1 = text_x1.split()[1:-1] | |
text_x1 = ' '.join(text_x1) | |
return text_x1 | |
################################################ | |
# Load model | |
MODEL_CLASSES = { | |
'gpt2': (GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer), | |
'bert': (BertConfig, BertForLatentConnector, BertTokenizer) | |
} | |
latent_size = 768 | |
model_path = './checkpoint-31250/checkpoint-full-31250/' | |
encoder_path = './checkpoint-31250/checkpoint-encoder-31250/' | |
decoder_path = './checkpoint-31250/checkpoint-decoder-31250/' | |
block_size = 100 | |
# Load a trained Encoder model and vocabulary that you have fine-tuned | |
encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES['bert'] | |
model_encoder = encoder_model_class.from_pretrained(encoder_path, latent_size=latent_size) | |
tokenizer_encoder = encoder_tokenizer_class.from_pretrained('bert-base-cased', do_lower_case=True) | |
model_encoder.to('cuda') | |
if block_size <= 0: | |
block_size = tokenizer_encoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
block_size = min(block_size, tokenizer_encoder.max_len_single_sentence) | |
# Load a trained Decoder model and vocabulary that you have fine-tuned | |
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES['gpt2'] | |
model_decoder = decoder_model_class.from_pretrained(decoder_path, latent_size=latent_size) | |
tokenizer_decoder = decoder_tokenizer_class.from_pretrained('gpt2', do_lower_case=False) | |
model_decoder.to('cuda') | |
if block_size <= 0: | |
block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model | |
block_size = min(block_size, tokenizer_decoder.max_len_single_sentence) | |
# Load full model | |
output_full_dir = '/home/ryn_mote/Misc/generative_recommender/text_space/' | |
checkpoint = torch.load(os.path.join(model_path, 'training.bin')) | |
# Chunyuan: Add Padding token to GPT2 | |
special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'} | |
num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict) | |
print('We have added', num_added_toks, 'tokens to GPT2') | |
model_decoder.resize_token_embeddings(len(tokenizer_decoder)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. | |
assert tokenizer_decoder.pad_token == '<PAD>' | |
# Evaluation | |
model_vae = VAE(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, SimpleNamespace(**{'latent_size': latent_size, 'device':'cuda'})) | |
model_vae.load_state_dict(checkpoint['model_state_dict']) | |
print("Pre-trained Optimus is successfully loaded") | |
model_vae.to('cuda').to(torch.bfloat16) | |
model_vae = torch.compile(model_vae) | |
l = latent_code_from_text('A photo of a mountain.')[0] | |
t = text_from_latent_code(l) | |
print(t, l, l.shape) | |
################################################ | |
import gradio as gr | |
import numpy as np | |
from sklearn.svm import SVC | |
from sklearn.inspection import permutation_importance | |
from sklearn import preprocessing | |
import pandas as pd | |
import random | |
import time | |
dtype = torch.bfloat16 | |
torch.set_grad_enabled(False) | |
prompt_list = [p for p in list(set( | |
pd.read_csv('./twitter_prompts.csv').iloc[:, 1].tolist())) if type(p) == str] | |
start_time = time.time() | |
####################### Setup Model | |
# TODO put back | |
# @spaces.GPU() | |
def generate(prompt, in_embs=None,): | |
if prompt != '': | |
print(prompt) | |
in_embs = in_embs / in_embs.abs().max() * .6 if in_embs != None else None | |
in_embs = 1 * in_embs.to('cuda') + 1 * latent_code_from_text(prompt)[0] if in_embs != None else latent_code_from_text(prompt)[0] | |
else: | |
print('From embeds.') | |
in_embs = in_embs / in_embs.abs().max() * .6 | |
in_embs = in_embs.to('cuda').to(torch.bfloat16) | |
plt.close('all') | |
plt.hist(np.array(in_embs.detach().to('cpu').to(torch.float)).flatten(), bins=5) | |
plt.savefig('real_im_emb_plot.jpg') | |
text = text_from_latent_code(in_embs).replace('<unk> ', '') | |
in_embs = latent_code_from_text(text)[0] | |
print(text) | |
return text, in_embs.to('cpu') | |
####################### | |
# TODO add to state instead of shared across all | |
glob_idx = 0 | |
def next_one(embs, ys, calibrate_prompts): | |
global glob_idx | |
glob_idx = glob_idx + 1 | |
with torch.no_grad(): | |
if len(calibrate_prompts) > 0: | |
print('######### Calibrating with sample prompts #########') | |
prompt = calibrate_prompts.pop(0) | |
text, img_embs = generate(prompt) | |
embs += img_embs | |
print(len(embs)) | |
return text, embs, ys, calibrate_prompts | |
else: | |
print('######### Roaming #########') | |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike' | |
if len(list(set(ys))) <= 1: | |
embs.append(.01*torch.randn(latent_size)) | |
embs.append(.01*torch.randn(latent_size)) | |
ys.append(0) | |
ys.append(1) | |
if len(list(ys)) < 10: | |
embs += [.01*torch.randn(latent_size)] * 3 | |
ys += [0] * 3 | |
pos_indices = [i for i in range(len(embs)) if ys[i] == 1] | |
neg_indices = [i for i in range(len(embs)) if ys[i] == 0] | |
# the embs & ys stay tied by index but we shuffle to drop randomly | |
random.shuffle(pos_indices) | |
random.shuffle(neg_indices) | |
if len(neg_indices) > 25: | |
neg_indices = neg_indices[1:] | |
print(len(pos_indices), len(neg_indices)) | |
indices = pos_indices + neg_indices | |
embs = [embs[i] for i in indices] | |
ys = [ys[i] for i in indices] | |
indices = list(range(len(embs))) | |
# also add the latest 0 and the latest 1 | |
#has_0 = False | |
#has_1 = False | |
#for i in reversed(range(len(ys))): | |
# if ys[i] == 0 and has_0 == False: | |
# indices.append(i) | |
# has_0 = True | |
# elif ys[i] == 1 and has_1 == False: | |
# indices.append(i) | |
# has_1 = True | |
# if has_0 and has_1: | |
# break | |
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749); | |
# this ends up adding a rating but losing an embedding, it seems. | |
# let's take off a rating if so to continue without indexing errors. | |
if len(ys) > len(embs): | |
print('ys are longer than embs; popping latest rating') | |
ys.pop(-1) | |
feature_embs = np.array(torch.stack([embs[i].to('cpu') for i in indices]).to('cpu')) | |
scaler = preprocessing.StandardScaler().fit(feature_embs) | |
feature_embs = scaler.transform(feature_embs) | |
chosen_y = np.array([ys[i] for i in indices]) | |
print('Gathering coefficients') | |
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, chosen_y) | |
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double) | |
print(coef_.shape, 'COEF') | |
print('Gathered') | |
rng_prompt = random.choice(prompt_list) | |
w = 1# if len(embs) % 2 == 0 else 0 | |
im_emb = w * coef_.to(dtype=dtype) | |
prompt= '' if glob_idx % 3 != 0 else rng_prompt | |
text, im_emb = generate(prompt, im_emb) | |
embs += im_emb | |
return text, embs, ys, calibrate_prompts | |
def start(_, embs, ys, calibrate_prompts): | |
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts) | |
return [ | |
gr.Button(value='Like (L)', interactive=True), | |
gr.Button(value='Neither (Space)', interactive=True), | |
gr.Button(value='Dislike (A)', interactive=True), | |
gr.Button(value='Start', interactive=False), | |
text, | |
embs, | |
ys, | |
calibrate_prompts | |
] | |
def choose(text, choice, embs, ys, calibrate_prompts): | |
if choice == 'Like (L)': | |
choice = 1 | |
elif choice == 'Neither (Space)': | |
embs = embs[:-1] | |
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts) | |
return text, embs, ys, calibrate_prompts | |
else: | |
choice = 0 | |
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen. | |
# TODO skip allowing rating | |
if text == None: | |
print('NSFW -- choice is disliked') | |
choice = 0 | |
ys += [choice]*1 | |
text, embs, ys, calibrate_prompts = next_one(embs, ys, calibrate_prompts) | |
return text, embs, ys, calibrate_prompts | |
css = '''.gradio-container{max-width: 700px !important} | |
#description{text-align: center} | |
#description h1, #description h3{display: block} | |
#description p{margin-top: 0} | |
.fade-in-out {animation: fadeInOut 3s forwards} | |
@keyframes fadeInOut { | |
0% { | |
background: var(--bg-color); | |
} | |
100% { | |
background: var(--button-secondary-background-fill); | |
} | |
} | |
''' | |
js_head = ''' | |
<script> | |
document.addEventListener('keydown', function(event) { | |
if (event.key === 'a' || event.key === 'A') { | |
// Trigger click on 'dislike' if 'A' is pressed | |
document.getElementById('dislike').click(); | |
} else if (event.key === ' ' || event.keyCode === 32) { | |
// Trigger click on 'neither' if Spacebar is pressed | |
document.getElementById('neither').click(); | |
} else if (event.key === 'l' || event.key === 'L') { | |
// Trigger click on 'like' if 'L' is pressed | |
document.getElementById('like').click(); | |
} | |
}); | |
function fadeInOut(button, color) { | |
button.style.setProperty('--bg-color', color); | |
button.classList.remove('fade-in-out'); | |
void button.offsetWidth; // This line forces a repaint by accessing a DOM property | |
button.classList.add('fade-in-out'); | |
button.addEventListener('animationend', () => { | |
button.classList.remove('fade-in-out'); // Reset the animation state | |
}, {once: true}); | |
} | |
document.body.addEventListener('click', function(event) { | |
const target = event.target; | |
if (target.id === 'dislike') { | |
fadeInOut(target, '#ff1717'); | |
} else if (target.id === 'like') { | |
fadeInOut(target, '#006500'); | |
} else if (target.id === 'neither') { | |
fadeInOut(target, '#cccccc'); | |
} | |
}); | |
</script> | |
''' | |
with gr.Blocks(css=css, head=js_head) as demo: | |
gr.Markdown('''# Compass | |
### Generative Recommenders for Exporation of Text | |
Explore the latent space without prompting based on your preferences. Learn more on [the write-up](https://rynmurdock.github.io/posts/2024/3/generative_recomenders/). | |
''', elem_id="description") | |
embs = gr.State([]) | |
ys = gr.State([]) | |
calibrate_prompts = gr.State([ | |
'the moon is melting into my glass of tea', | |
'a sea slug -- pair of claws scuttling -- jelly fish glowing', | |
'an adorable creature. It may be a goblin or a pig or a slug.', | |
'an animation about a gorgeous nebula', | |
'a sketch of an impressive mountain by da vinci', | |
'a watercolor painting: the octopus writhes', | |
]) | |
def l(): | |
return None | |
with gr.Row(elem_id='output-image'): | |
text = gr.Textbox(interactive=False, elem_id="text") | |
with gr.Row(equal_height=True): | |
b3 = gr.Button(value='Dislike (A)', interactive=False, elem_id="dislike") | |
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither") | |
b1 = gr.Button(value='Like (L)', interactive=False, elem_id="like") | |
b1.click( | |
choose, | |
[text, b1, embs, ys, calibrate_prompts], | |
[text, embs, ys, calibrate_prompts] | |
) | |
b2.click( | |
choose, | |
[text, b2, embs, ys, calibrate_prompts], | |
[text, embs, ys, calibrate_prompts] | |
) | |
b3.click( | |
choose, | |
[text, b3, embs, ys, calibrate_prompts], | |
[text, embs, ys, calibrate_prompts] | |
) | |
with gr.Row(): | |
b4 = gr.Button(value='Start') | |
b4.click(start, | |
[b4, embs, ys, calibrate_prompts], | |
[b1, b2, b3, b4, text, embs, ys, calibrate_prompts]) | |
with gr.Row(): | |
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several prompts and then roam. </ div><br><br><br> | |
<div style='text-align:center; font-size:14px'>Note that while the model is unlikely to produce NSFW text, this may still occur, and users should avoid NSFW content when rating. | |
</ div> | |
<br><br> | |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback. | |
</ div>''') | |
demo.launch(share=True) | |