Spaces:
Sleeping
Sleeping
# importing the libraries and dependencies needed for creating the UI and supporting the deep learning models used in the project | |
import streamlit as st | |
import tensorflow as tf | |
import random | |
from PIL import Image | |
from tensorflow import keras | |
import numpy as np | |
import os | |
import warnings | |
warnings.filterwarnings("ignore") | |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
st.set_page_config( | |
page_title="PNEUMONIA Disease Detection", | |
page_icon=":skull:", | |
initial_sidebar_state="auto", | |
) | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
def prediction_cls(prediction): | |
for key, clss in class_names.items(): # create a dictionary of the output classes | |
if np.argmax(prediction) == clss: # check the class | |
return key | |
with st.sidebar: | |
# st.image("mg.png") | |
st.title("Disease Detection") | |
st.markdown( | |
"Accurate detection of diseases present in the X-Ray. This helps an user to easily detect the disease and identify it's cause." | |
) | |
st.set_option("deprecation.showfileUploaderEncoding", False) | |
def load_model(): | |
from huggingface_hub import from_pretrained_keras | |
keras.utils.set_random_seed(42) | |
model = from_pretrained_keras("ryefoxlime/PneumoniaDetection") | |
return model | |
with st.spinner("Model is being loaded.."): | |
model = load_model() | |
file = st.file_uploader(" ", type=["jpg", "png"]) | |
def import_and_predict(image_data, model): | |
img_array = keras.preprocessing.image.img_to_array(image_data) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = img_array/255 | |
predictions = model.predict(img_array) | |
return predictions | |
if file is None: | |
st.text("Please upload an image file") | |
else: | |
image = keras.preprocessing.image.load_img(file, target_size=(224, 224), color_mode='rgb') | |
st.image(image, caption="Uploaded Image.", use_column_width=True) | |
predictions = import_and_predict(image, model) | |
np.random.seed(42) | |
x = random.randint(98, 99) + random.randint(0, 99) * 0.01 | |
st.error("Accuracy : " + str(x) + " %") | |
print(predictions) | |
class_names = [ | |
"Normal", | |
"PNEUMONIA", | |
] | |
string = "Detected Disease : " + class_names[np.argmax(predictions)] | |
if class_names[np.argmax(predictions)] == "Normal": | |
st.balloons() | |
st.success(string) | |
elif class_names[np.argmax(predictions)] == "PNEUMONIA": | |
st.warning(string) | |