Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import pickle | |
def run(): | |
# Load All Files | |
with open('pipeline_model.pkl', 'rb') as file: | |
full_process = pickle.load(file) | |
file_path = "/Users/ryantrisnadi/Desktop/first_project1/p1-ftds017-hck-g5-ryantrisnadi/_P1G5_Set_1_Ryan_Trisnadi.csv" | |
df_original = pd.read_csv(file_path) | |
index_columns = ['limit_balance', 'sex', 'education_level', 'marital_status', 'age', | |
'pay_0', 'pay_2', 'pay_3', 'pay_4', 'pay_5', 'pay_6', 'bill_amt_1', | |
'bill_amt_2', 'bill_amt_3', 'bill_amt_4', 'bill_amt_5', 'bill_amt_6', | |
'pay_amt_1', 'pay_amt_2', 'pay_amt_3', 'pay_amt_4', 'pay_amt_5', | |
'pay_amt_6', 'default_payment_next_month'] | |
df_data_dummy = df_original[index_columns].copy() | |
st.write('In the following is the result of the data you have input : ') | |
print(df_data_dummy.head()) | |
st.table(df_data_dummy) | |
if st.button(label='predict'): | |
# Melakukan prediksi data dummy | |
y_pred_inf = full_process.predict(df_data_dummy) | |
st.write('Client kemungkinan gagal bayar utang') | |
st.metric(label="Here is a prediction: ", value = y_pred_inf[0]) | |
# If your data is a classification, you can follow the example below | |
# if y_pred_inf[0] == 0: | |
# st.write('Pasien tidak terkena jantung') | |
# st.markdown("[Cara Cegah Serangan Jantung](https://www.siloamhospitals.com/informasi-siloam/artikel/cara-cegah-serangan-jantung-di-usia-muda)") | |
# else: | |
# st.write('Pasien kemungkinan terkena jantung') | |
# st.markdown("[Cara Hidup Sehat Sehabis Terkena Serangan Jantung](https://lifestyle.kompas.com/read/2021/11/09/101744620/7-pola-hidup-sehat-setelah-mengalami-serangan-jantung?page=all)") |