Spaces:
Running
Running
import gradio as gr | |
import openai | |
import requests | |
import csv | |
import os | |
import langchain | |
import chromadb | |
import glob | |
import pickle | |
from datetime import datetime | |
from PyPDF2 import PdfReader | |
from PyPDF2 import PdfWriter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain import OpenAI | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.chains.question_answering import load_qa_chain | |
openai.api_key = os.environ['openai_key'] | |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key'] | |
prompt_templates = {"All Needs Experts": "Respond as if you are combination of all needs assessment experts."} | |
actor_description = {"All Needs Experts": "<div style='float: left;margin: 0px 5px 0px 5px;'><img src='https://na.weshareresearch.com/wp-content/uploads/2023/04/experts2.jpg' alt='needs expert image' style='width:70px;align:top;'></div>A combiation of all needs assessment experts."} | |
prompts_archive_url = "https://huggingface.co/datasets/ryanrwatkins/na_prompts_archive" | |
prompts_archive_file_name = "prompts_archive.txt" | |
prompts_archive_file = os.path.join("prompts_archive", prompts_archive_file_name) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
repo = Repository( | |
local_dir="data", clone_from=prompts_archive_url, use_auth_token=HF_TOKEN | |
) | |
repo.push_to_hub() | |
def get_empty_state(): | |
return { "messages": []} | |
def download_prompt_templates(): | |
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt" | |
try: | |
response = requests.get(url) | |
reader = csv.reader(response.text.splitlines()) | |
next(reader) # skip the header row | |
for row in reader: | |
if len(row) >= 2: | |
act = row[0].strip('"') | |
prompt = row[1].strip('"') | |
description = row[2].strip('"') | |
prompt_templates[act] = prompt | |
actor_description[act] = description | |
except requests.exceptions.RequestException as e: | |
print(f"An error occurred while downloading prompt templates: {e}") | |
return | |
choices = list(prompt_templates.keys()) | |
choices = choices[:1] + sorted(choices[1:]) | |
return gr.update(value=choices[0], choices=choices) | |
def on_prompt_template_change(prompt_template): | |
if not isinstance(prompt_template, str): return | |
return prompt_templates[prompt_template] | |
def on_prompt_template_change_description(prompt_template): | |
if not isinstance(prompt_template, str): return | |
return actor_description[prompt_template] | |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state): | |
history = state['messages'] | |
if not prompt: | |
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state | |
prompt_template = prompt_templates[prompt_template] | |
with open(DATA_FILE, "a") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=["prompt", "time"]) | |
writer.writerow( | |
{"prompt": str(prompt), "time": str(datetime.now())} | |
) | |
system_prompt = [] | |
if prompt_template: | |
system_prompt = [{ "role": "system", "content": prompt_template }] | |
prompt_msg = { "role": "user", "content": prompt } | |
#try: | |
with open("embeddings.pkl", 'rb') as f: | |
new_docsearch = pickle.load(f) | |
query = str(system_prompt + history + [prompt_msg]) | |
docs = new_docsearch.similarity_search(query) | |
chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff") | |
completion = chain.run(input_documents=docs, question=query) | |
get_empty_state() | |
state['content'] = completion | |
#state.append(completion.copy()) | |
completion = { "content": completion } | |
#state['total_tokens'] += completion['usage']['total_tokens'] | |
#except Exception as e: | |
# history.append(prompt_msg.copy()) | |
# error = { | |
# "role": "system", | |
# "content": f"Error: {e}" | |
# } | |
# history.append(error.copy()) | |
#total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}" | |
chat_messages = [(prompt_msg['content'], completion['content'])] | |
return '', chat_messages, state # total_tokens_used_msg, | |
def clear_conversation(): | |
return gr.update(value=None, visible=True), None, "", get_empty_state() | |
css = """ | |
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;} | |
#chatbox {min-height: 400px;} | |
#header {text-align: center;} | |
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;} | |
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;} | |
#label {font-size: 0.8em; padding: 0.5em; margin: 0;} | |
.message { font-size: 1.2em; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
state = gr.State(get_empty_state()) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""## Ask questions of *needs assessment* experts, | |
## get responses from a *needs assessment experts* version of ChatGPT. | |
Ask questions of all of them, or pick your expert below.""" , | |
elem_id="header") | |
with gr.Row(): | |
with gr.Column(): | |
chatbot = gr.Chatbot(elem_id="chatbox") | |
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False) | |
btn_submit = gr.Button("Submit") | |
#total_tokens_str = gr.Markdown(elem_id="total_tokens_str") | |
btn_clear_conversation = gr.Button("Start New Conversation") | |
with gr.Column(): | |
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys())) | |
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview") | |
with gr.Accordion("Advanced parameters", open=False): | |
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert") | |
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.") | |
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.") | |
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state]) | |
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state]) | |
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, state]) | |
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview]) | |
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False) | |
demo.queue(concurrency_count=10) | |
demo.launch(height='800px') | |