Spaces:
Running
Running
import gradio as gr | |
import openai | |
import requests | |
import csv | |
import os | |
import langchain | |
import chromadb | |
import glob | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import TokenTextSplitter | |
#from langchain.llms import OpenAI | |
from langchain.chat_models import ChatOpenAI | |
#from langchain.chains import ChatVectorDBChain | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.chains.question_answering import load_qa_chain | |
# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here. | |
#from chromadb.config import Settings | |
#client = chromadb.Client(Settings( | |
## chroma_db_impl="duckdb+parquet", | |
# persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory | |
#)) | |
def get_empty_state(): | |
return {"total_tokens": 0, "messages": []} | |
#Initial prompt template, others added below from TXT file | |
prompt_templates = {"All Needs Experts": "I want you to act as a needs assessment expert."} | |
def download_prompt_templates(): | |
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt" | |
try: | |
response = requests.get(url) | |
reader = csv.reader(response.text.splitlines()) | |
next(reader) # skip the header row | |
for row in reader: | |
if len(row) >= 2: | |
act = row[0].strip('"') | |
prompt = row[1].strip('"') | |
# description = row[2].strip('"') | |
prompt_templates[act] = prompt | |
except requests.exceptions.RequestException as e: | |
print(f"An error occurred while downloading prompt templates: {e}") | |
return | |
choices = list(prompt_templates.keys()) | |
choices = choices[:1] + sorted(choices[1:]) | |
return gr.update(value=choices[0], choices=choices) | |
def on_prompt_template_change(prompt_template): | |
if not isinstance(prompt_template, str): return | |
return prompt_templates[prompt_template] | |
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state): | |
openai.api_key = os.environ['openai_key'] | |
os.environ["OPENAI_API_KEY"] = os.environ['openai_key'] | |
# load in all the files | |
path = './files' | |
#pdf_files = glob.glob(os.path.join(path, "*.pdf")) | |
pdf_files = glob.glob(os.path.join(path, "*.pdf")) | |
for file in pdf_files: | |
loader = PyPDFLoader(file) | |
pages = loader.load_and_split() | |
text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0) | |
split_pages = text_splitter.split_documents(pages) | |
persist_directory = "./embeddings" | |
embeddings = OpenAIEmbeddings() | |
vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory) | |
vectordb.persist() | |
history = state['messages'] | |
if not prompt: | |
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state | |
prompt_template = prompt_templates[prompt_template] | |
system_prompt = [] | |
if prompt_template: | |
system_prompt = [{ "role": "system", "content": prompt_template }] | |
prompt_msg = { "role": "user", "content": prompt } | |
try: | |
#completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens) | |
# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens) | |
completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" ) | |
completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever()) | |
query = str(system_prompt + history[-context_length*2:] + [prompt_msg]) | |
completion = completion.run(query) | |
# from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8 | |
history.append(prompt_msg) | |
history.append(completion.choices[0].message.to_dict()) | |
state['total_tokens'] += completion['usage']['total_tokens'] | |
except Exception as e: | |
history.append(prompt_msg) | |
history.append({ | |
"role": "system", | |
"content": f"Error: {e}" | |
}) | |
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}" | |
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)] | |
return '', chat_messages, total_tokens_used_msg, state | |
def clear_conversation(): | |
return gr.update(value=None, visible=True), None, "", get_empty_state() | |
css = """ | |
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;} | |
#chatbox {min-height: 400px;} | |
#header {text-align: center;} | |
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;} | |
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;} | |
#label {font-size: 0.8em; padding: 0.5em; margin: 0;} | |
.message { font-size: 1.2em; } | |
""" | |
with gr.Blocks(css=css) as demo: | |
state = gr.State(get_empty_state()) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""# Chat with Needs Assessment Experts (Past and Present) | |
## Ask questions of experts on needs assessments, get responses from *needs assessment* version of ChatGPT. | |
Ask questions of all of them, or pick your expert.""", | |
elem_id="header") | |
with gr.Row(): | |
with gr.Column(): | |
chatbot = gr.Chatbot(elem_id="chatbox") | |
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False) | |
btn_submit = gr.Button("Submit") | |
total_tokens_str = gr.Markdown(elem_id="total_tokens_str") | |
btn_clear_conversation = gr.Button("Start New Conversation") | |
with gr.Column(): | |
prompt_template = gr.Dropdown(label="Choose a expert:", choices=list(prompt_templates.keys())) | |
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview") | |
with gr.Accordion("Advanced parameters", open=False): | |
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = more creative/chaotic, Lower = just the guru") | |
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Max tokens per response") | |
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context length", info="Number of previous questions you have asked. Be careful with high values, it can blow up the token budget quickly.") | |
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state]) | |
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state]) | |
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state]) | |
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview]) | |
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False) | |
demo.queue(concurrency_count=10) | |
demo.launch(height='800px') | |