needs / app.py
ryanrwatkins's picture
Update app.py
7298dcb
raw
history blame
7.92 kB
import gradio as gr
import openai
import requests
import csv
import os
import langchain
import chromadb
import glob
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import TokenTextSplitter
#from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
#from langchain.chains import ChatVectorDBChain
from langchain.chains import RetrievalQA
from langchain.document_loaders import PyPDFLoader
from langchain.chains.question_answering import load_qa_chain
# Use Chroma in Colab to create vector embeddings, I then saved them to HuggingFace so now I have to set it use them here.
#from chromadb.config import Settings
#client = chromadb.Client(Settings(
## chroma_db_impl="duckdb+parquet",
# persist_directory="./embeddings" # Optional, defaults to .chromadb/ in the current directory
#))
def get_empty_state():
return {"total_tokens": 0, "messages": []}
#Initial prompt template, others added below from TXT file
prompt_templates = {"All Needs Experts": "I want you to act as a needs assessment expert."}
def download_prompt_templates():
url = "https://huggingface.co/spaces/ryanrwatkins/needs/raw/main/gurus.txt"
try:
response = requests.get(url)
reader = csv.reader(response.text.splitlines())
next(reader) # skip the header row
for row in reader:
if len(row) >= 2:
act = row[0].strip('"')
prompt = row[1].strip('"')
# description = row[2].strip('"')
prompt_templates[act] = prompt
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading prompt templates: {e}")
return
choices = list(prompt_templates.keys())
choices = choices[:1] + sorted(choices[1:])
return gr.update(value=choices[0], choices=choices)
def on_prompt_template_change(prompt_template):
if not isinstance(prompt_template, str): return
return prompt_templates[prompt_template]
def submit_message(prompt, prompt_template, temperature, max_tokens, context_length, state):
openai.api_key = os.environ['openai_key']
os.environ["OPENAI_API_KEY"] = os.environ['openai_key']
# load in all the files
path = './files'
#pdf_files = glob.glob(os.path.join(path, "*.pdf"))
pdf_files = glob.glob(os.path.join(path, "*.pdf"))
for file in pdf_files:
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)
split_pages = text_splitter.split_documents(pages)
persist_directory = "./embeddings"
embeddings = OpenAIEmbeddings()
vectordb = Chroma.from_documents(split_pages, embeddings, persist_directory=persist_directory)
vectordb.persist()
history = state['messages']
if not prompt:
return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], f"Total tokens used: {state['total_tokens']}", state
prompt_template = prompt_templates[prompt_template]
system_prompt = []
if prompt_template:
system_prompt = [{ "role": "system", "content": prompt_template }]
prompt_msg = { "role": "user", "content": prompt }
try:
#completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
# completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=system_prompt + history[-context_length*2:] + [prompt_msg], temperature=temperature, max_tokens=max_tokens)
completion_chain = load_qa_chain(ChatOpenAI(temperature=temperature, max_tokens=max_tokens, model_name="gpt-3.5-turbo"), chain_type="stuff" )
completion = RetrievalQA(combine_documents_chain=completion_chain, retriever=vectordb.as_retriever())
query = str(system_prompt + history[-context_length*2:] + [prompt_msg])
completion = completion.run(query)
# from https://blog.devgenius.io/chat-with-document-s-using-openai-chatgpt-api-and-text-embedding-6a0ce3dc8bc8
history.append(prompt_msg)
history.append(completion.choices[0].message.to_dict())
state['total_tokens'] += completion['usage']['total_tokens']
except Exception as e:
history.append(prompt_msg)
history.append({
"role": "system",
"content": f"Error: {e}"
})
total_tokens_used_msg = f"Total tokens used: {state['total_tokens']}"
chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
return '', chat_messages, total_tokens_used_msg, state
def clear_conversation():
return gr.update(value=None, visible=True), None, "", get_empty_state()
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#chatbox {min-height: 400px;}
#header {text-align: center;}
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
.message { font-size: 1.2em; }
"""
with gr.Blocks(css=css) as demo:
state = gr.State(get_empty_state())
with gr.Column(elem_id="col-container"):
gr.Markdown("""# Chat with Needs Assessment Experts (Past and Present)
## Ask questions of experts on needs assessments, get responses from *needs assessment* version of ChatGPT.
Ask questions of all of them, or pick your expert.""",
elem_id="header")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(elem_id="chatbox")
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question and press enter", visible=True).style(container=False)
btn_submit = gr.Button("Submit")
total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
btn_clear_conversation = gr.Button("Start New Conversation")
with gr.Column():
prompt_template = gr.Dropdown(label="Choose a expert:", choices=list(prompt_templates.keys()))
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
with gr.Accordion("Advanced parameters", open=False):
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = more creative/chaotic, Lower = just the guru")
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Max tokens per response")
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context length", info="Number of previous questions you have asked. Be careful with high values, it can blow up the token budget quickly.")
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, total_tokens_str, state])
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, total_tokens_str, state])
prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
demo.queue(concurrency_count=10)
demo.launch(height='800px')