Spaces:
Build error
Build error
ryanpdwyer
commited on
Commit
•
180f4e1
1
Parent(s):
e424b8e
Switched to pipeline api
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import os
|
5 |
|
@@ -11,15 +11,19 @@ if not hf_token:
|
|
11 |
st.error("Hugging Face token not found. Please add your HF_TOKEN to the Space secrets.")
|
12 |
st.stop()
|
13 |
|
14 |
-
# Load models and tokenizers
|
15 |
-
@st.cache_resource
|
16 |
-
def load_model_and_tokenizer(model_name):
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
19 |
-
return model, tokenizer
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def generate_text(model, tokenizer, prompt, max_length=100):
|
25 |
inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -36,14 +40,14 @@ if st.button("Generate"):
|
|
36 |
if prompt:
|
37 |
col1, col2 = st.columns(2)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
with col2:
|
45 |
st.subheader("LLaMA-3.1-8B-Instruct Output")
|
46 |
-
output_8b_instruct =
|
47 |
-
st.write(output_8b_instruct)
|
48 |
else:
|
49 |
st.warning("Please enter a prompt.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
import torch
|
4 |
import os
|
5 |
|
|
|
11 |
st.error("Hugging Face token not found. Please add your HF_TOKEN to the Space secrets.")
|
12 |
st.stop()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
@st.cache_resource
|
16 |
+
def load_pipeline(model_name):
|
17 |
+
with st.spinner(f'Loading {model_name}... This may take several minutes.'):
|
18 |
+
try:
|
19 |
+
pipe = pipeline("text-generation", model=model_name)
|
20 |
+
except Exception as e:
|
21 |
+
st.error(f"An error occurred: {e}")
|
22 |
+
st.stop()
|
23 |
+
return pipe
|
24 |
+
|
25 |
+
pipe8 = load_pipeline("unsloth/Meta-Llama-3.1-8B-bnb-4bit")
|
26 |
+
pipe8instruct = load_pipeline("SanctumAI/Meta-Llama-3.1-8B-Instruct-GGUF")
|
27 |
|
28 |
def generate_text(model, tokenizer, prompt, max_length=100):
|
29 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
40 |
if prompt:
|
41 |
col1, col2 = st.columns(2)
|
42 |
|
43 |
+
with col1:
|
44 |
+
st.subheader("LLaMA-3.1-8B Output")
|
45 |
+
output_8b = pipe8(prompt, max_length)
|
46 |
+
st.write(output_8b[0]['generated_text'])
|
47 |
|
48 |
with col2:
|
49 |
st.subheader("LLaMA-3.1-8B-Instruct Output")
|
50 |
+
output_8b_instruct = pipe8instruct(prompt, max_length)
|
51 |
+
st.write(output_8b_instruct[0]['generated_text'])
|
52 |
else:
|
53 |
st.warning("Please enter a prompt.")
|