Spaces:
Build error
Build error
import streamlit as st | |
from optimum.nvidia.pipelines import pipeline | |
import torch | |
import os | |
import sys | |
# Retrieve the Hugging Face token from environment variables | |
hf_token = os.environ.get("HF_TOKEN") | |
if not hf_token: | |
st.error("Hugging Face token not found. Please add your HF_TOKEN to the Space secrets.") | |
st.stop() | |
def load_pipeline(model_name): | |
with st.spinner(f'Loading {model_name}... This may take several minutes.'): | |
try: | |
pipe = pipeline("text-generation", model=model_name,use_fp8=True) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.stop() | |
return pipe | |
pipe8 = load_pipeline("unsloth/Meta-Llama-3.1-8B-bnb-4bit") | |
pipe8instruct = load_pipeline("SanctumAI/Meta-Llama-3.1-8B-Instruct-GGUF") | |
def generate_text(model, tokenizer, prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.title("LLaMA-3.1-8B vs LLaMA-3.1-8B-Instruct Comparison") | |
prompt = st.text_area("Enter your prompt:", height=100) | |
max_length = st.slider("Max output length:", min_value=50, max_value=500, value=100) | |
if st.button("Generate"): | |
if prompt: | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("LLaMA-3.1-8B Output") | |
output_8b = pipe8(prompt, max_length) | |
st.write(output_8b[0]['generated_text']) | |
with col2: | |
st.subheader("LLaMA-3.1-8B-Instruct Output") | |
output_8b_instruct = pipe8instruct(prompt, max_length) | |
st.write(output_8b_instruct[0]['generated_text']) | |
else: | |
st.warning("Please enter a prompt.") |