llm-app / app.py
ryanklauer's picture
Remove Response: from response
ae02394
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
import openai
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from dotenv import load_dotenv
from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter
from aimakerspace.vectordatabase import VectorDatabase
import asyncio
from getpass import getpass
# load_dotenv()
#openai.api_key = getpass("OpenAI API Key: ")
#os.environ["OPENAI_API_KEY"] = openai.api_key
#wandb_key = getpass("Weights and Biases API Key: ")
#os.environ["WANDB_API_KEY"] = wandb_key
text_loader = TextFileLoader("data/KingLear.txt")
documents = text_loader.load_documents()
text_splitter = CharacterTextSplitter()
split_documents = text_splitter.split_texts(documents)
vector_db = VectorDatabase()
vector_db = asyncio.run(vector_db.abuild_from_list(split_documents))
#
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
chat_openai = ChatOpenAI()
RAQA_PROMPT_TEMPLATE = """
Use the provided context to answer the user's query.
You may not answer the user's query unless there is specific context in the following text.
If you do not know the answer, or cannot answer, please respond with "I don't know".
Context:
{context}
"""
raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE)
USER_PROMPT_TEMPLATE = """
User Query:
{user_query}
"""
user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE)
import wandb
os.environ["WANDB_NOTEBOOK_NAME"] = "app.py"
wandb.init(project="Visibility Example")
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
import datetime
from wandb.sdk.data_types.trace_tree import Trace
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase, wandb_project = None) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
self.wandb_project = wandb_project
def run_pipeline(self, user_query: str) -> str:
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = raqa_prompt.create_message(context=context_prompt)
formatted_user_prompt = user_prompt.create_message(user_query=user_query)
start_time = datetime.datetime.now().timestamp() * 1000
try:
openai_response = self.llm.run([formatted_system_prompt, formatted_user_prompt], text_only=False)
end_time = datetime.datetime.now().timestamp() * 1000
status = "success"
status_message = (None, )
response_text = openai_response.choices[0].message.content
token_usage = dict(openai_response.usage)
model = openai_response.model
except Exception as e:
end_time = datetime.datetime.now().timestamp() * 1000
status = "error"
status_message = str(e)
response_text = ""
token_usage = {}
model = ""
if self.wandb_project:
root_span = Trace(
name="root_span",
kind="llm",
status_code=status,
status_message=status_message,
start_time_ms=start_time,
end_time_ms=end_time,
metadata={
"token_usage" : token_usage,
"model_name" : model
},
inputs= {"system_prompt" : formatted_system_prompt, "user_prompt" : formatted_user_prompt},
outputs= {"response" : response_text}
)
root_span.log(name="openai_trace")
return response_text if response_text else "We ran into an error. Please try again later. Full Error Message: " + status_message
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
vector_db_retriever=vector_db,
llm=chat_openai,
wandb_project="LLM Visibility Example"
)
await cl.Message(
content=f"{retrieval_augmented_qa_pipeline.run_pipeline(message.content)}",
).send()