|
import os |
|
import json |
|
import torch |
|
from torch import nn |
|
|
|
class SparseAutoencoder(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
n_dirs_local: int, |
|
d_model: int, |
|
k: int, |
|
auxk: int, |
|
dead_steps_threshold: int, |
|
auxk_coef: float |
|
): |
|
super().__init__() |
|
self.n_dirs_local = n_dirs_local |
|
self.d_model = d_model |
|
self.k = k |
|
self.auxk = auxk |
|
self.dead_steps_threshold = dead_steps_threshold |
|
self.auxk_coef = auxk_coef |
|
self.encoder = nn.Linear(d_model, n_dirs_local, bias=False) |
|
self.decoder = nn.Linear(n_dirs_local, d_model, bias=False) |
|
|
|
self.pre_bias = nn.Parameter(torch.zeros(d_model)) |
|
self.latent_bias = nn.Parameter(torch.zeros(n_dirs_local)) |
|
|
|
self.stats_last_nostats_last_nonzeronzero: torch.Tensor |
|
self.register_buffer("stats_last_nonzero", torch.zeros(n_dirs_local, dtype=torch.long)) |
|
|
|
def auxk_mask_fn(x): |
|
dead_mask = self.stats_last_nonzero > dead_steps_threshold |
|
x.data *= dead_mask |
|
return x |
|
|
|
self.auxk_mask_fn = auxk_mask_fn |
|
|
|
|
|
|
|
self.decoder.weight.data = self.encoder.weight.data.T.clone() |
|
|
|
|
|
self.decoder.weight.data = self.decoder.weight.data.T.contiguous().T |
|
self.mse_scale = 1 |
|
unit_norm_decoder_(self) |
|
|
|
def save_to_disk(self, path: str): |
|
PATH_TO_CFG = 'config.json' |
|
PATH_TO_WEIGHTS = 'state_dict.pth' |
|
|
|
cfg = { |
|
"n_dirs_local": self.n_dirs_local, |
|
"d_model": self.d_model, |
|
"k": self.k, |
|
"auxk": self.auxk, |
|
"dead_steps_threshold": self.dead_steps_threshold, |
|
"auxk_coef": self.auxk_coef |
|
} |
|
|
|
os.makedirs(path, exist_ok=True) |
|
|
|
with open(os.path.join(path, PATH_TO_CFG), 'w') as f: |
|
json.dump(cfg, f) |
|
|
|
torch.save({ |
|
"state_dict": self.state_dict(), |
|
}, os.path.join(path, PATH_TO_WEIGHTS)) |
|
|
|
@classmethod |
|
def load_from_disk(cls, path: str): |
|
PATH_TO_CFG = 'config.json' |
|
PATH_TO_WEIGHTS = 'state_dict.pth' |
|
|
|
with open(os.path.join(path, PATH_TO_CFG), 'r') as f: |
|
cfg = json.load(f) |
|
|
|
ae = cls( |
|
n_dirs_local=cfg["n_dirs_local"], |
|
d_model=cfg["d_model"], |
|
k=cfg["k"], |
|
auxk=cfg["auxk"], |
|
dead_steps_threshold=cfg["dead_steps_threshold"], |
|
auxk_coef = cfg["auxk_coef"] if "auxk_coef" in cfg else 1/32 |
|
) |
|
|
|
state_dict = torch.load(os.path.join(path, PATH_TO_WEIGHTS), map_location=torch.device('cpu'))["state_dict"] |
|
ae.load_state_dict(state_dict) |
|
|
|
return ae |
|
|
|
@property |
|
def n_dirs(self): |
|
return self.n_dirs_local |
|
|
|
def encode(self, x): |
|
x = x - self.pre_bias |
|
latents_pre_act = self.encoder(x) + self.latent_bias |
|
|
|
vals, inds = torch.topk( |
|
latents_pre_act, |
|
k=self.k, |
|
dim=-1 |
|
) |
|
|
|
latents = torch.zeros_like(latents_pre_act) |
|
latents.scatter_(-1, inds, torch.relu(vals)) |
|
|
|
return latents |
|
|
|
def encode_with_k(self, x, k): |
|
x = x - self.pre_bias |
|
latents_pre_act = self.encoder(x) + self.latent_bias |
|
|
|
vals, inds = torch.topk( |
|
latents_pre_act, |
|
k=k, |
|
dim=-1 |
|
) |
|
|
|
latents = torch.zeros_like(latents_pre_act) |
|
latents.scatter_(-1, inds, torch.relu(vals)) |
|
|
|
return latents |
|
|
|
def encode_without_topk(self, x): |
|
x = x - self.pre_bias |
|
latents_pre_act = torch.relu(self.encoder(x) + self.latent_bias) |
|
return latents_pre_act |
|
|
|
|
|
def forward(self, x): |
|
x = x - self.pre_bias |
|
latents_pre_act = self.encoder(x) + self.latent_bias |
|
l0 = (latents_pre_act > 0).float().sum(-1).mean() |
|
vals, inds = torch.topk( |
|
latents_pre_act, |
|
k=self.k, |
|
dim=-1 |
|
) |
|
with torch.no_grad(): |
|
|
|
tmp = torch.zeros_like(self.stats_last_nonzero) |
|
tmp.scatter_add_( |
|
0, |
|
inds.reshape(-1), |
|
(vals > 1e-3).to(tmp.dtype).reshape(-1), |
|
) |
|
self.stats_last_nonzero *= 1 - tmp.clamp(max=1) |
|
self.stats_last_nonzero += 1 |
|
|
|
del tmp |
|
|
|
if self.auxk is not None: |
|
auxk_vals, auxk_inds = torch.topk( |
|
self.auxk_mask_fn(latents_pre_act), |
|
k=self.auxk, |
|
dim=-1 |
|
) |
|
else: |
|
auxk_inds = None |
|
auxk_vals = None |
|
|
|
|
|
|
|
vals = torch.relu(vals) |
|
if auxk_vals is not None: |
|
auxk_vals = torch.relu(auxk_vals) |
|
|
|
rows, cols = latents_pre_act.size() |
|
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, self.k).reshape(-1) |
|
vals = vals.reshape(-1) |
|
inds = inds.reshape(-1) |
|
|
|
indices = torch.stack([row_indices.to(inds.device), inds]) |
|
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols])) |
|
|
|
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias |
|
|
|
mse_loss = self.mse_scale * self.mse(recons, x) |
|
|
|
|
|
if auxk_vals is not None: |
|
auxk_recons = self.decode_sparse(auxk_inds, auxk_vals) |
|
auxk_loss =self.auxk_coef * self.normalized_mse(auxk_recons, x - recons.detach() + self.pre_bias.detach()).nan_to_num(0) |
|
else: |
|
auxk_loss = 0.0 |
|
|
|
total_loss = mse_loss + auxk_loss |
|
|
|
return recons, total_loss, { |
|
"inds": inds, |
|
"vals": vals, |
|
"auxk_inds": auxk_inds, |
|
"auxk_vals": auxk_vals, |
|
"l0": l0, |
|
"train_recons": mse_loss, |
|
"train_maxk_recons": auxk_loss |
|
} |
|
|
|
|
|
def decode_sparse(self, inds, vals): |
|
rows, cols = inds.shape[0], self.n_dirs |
|
|
|
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, inds.shape[1]).reshape(-1) |
|
vals = vals.reshape(-1) |
|
inds = inds.reshape(-1) |
|
|
|
indices = torch.stack([row_indices.to(inds.device), inds]) |
|
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols])) |
|
|
|
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias |
|
return recons |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
def mse(self, recons, x): |
|
|
|
return ((recons - x) ** 2).mean() |
|
|
|
def normalized_mse(self, recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor: |
|
|
|
xs_mu = xs.mean(dim=0) |
|
|
|
loss = self.mse(recon, xs) / self.mse( |
|
xs_mu[None, :].broadcast_to(xs.shape), xs |
|
) |
|
|
|
return loss |
|
|
|
def unit_norm_decoder_(autoencoder: SparseAutoencoder) -> None: |
|
|
|
autoencoder.decoder.weight.data /= autoencoder.decoder.weight.data.norm(dim=0) |
|
|
|
|
|
def unit_norm_decoder_grad_adjustment_(autoencoder) -> None: |
|
|
|
assert autoencoder.decoder.weight.grad is not None |
|
|
|
autoencoder.decoder.weight.grad +=\ |
|
torch.einsum("bn,bn->n", autoencoder.decoder.weight.data, autoencoder.decoder.weight.grad) *\ |
|
autoencoder.decoder.weight.data * -1 |