Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,13 @@ import random
|
|
4 |
import numpy as np
|
5 |
from transformers import CLIPProcessor, CLIPModel
|
6 |
from os import environ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load the pre-trained model and processor
|
9 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
@@ -33,10 +40,61 @@ get_caption = gr.load("ryaalbr/caption", src="spaces", hf_token=environ["api_key
|
|
33 |
def generate_text(image, model_name):
|
34 |
return get_caption(image, model_name)
|
35 |
|
36 |
-
get_images = gr.load("ryaalbr/ImageSearch", src="spaces", hf_token=environ["api_key"])
|
37 |
-
def search_images(text):
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
with gr.Blocks() as demo:
|
41 |
|
42 |
with gr.Tab("Zero-Shot Classification"):
|
@@ -87,6 +145,6 @@ with gr.Blocks() as demo:
|
|
87 |
desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False)
|
88 |
search_btn = gr.Button("Find Images").style(full_width=False)
|
89 |
gallery = gr.Gallery(show_label=False).style(grid=(2,2,3,5))
|
90 |
-
search_btn.click(
|
91 |
|
92 |
demo.launch()
|
|
|
4 |
import numpy as np
|
5 |
from transformers import CLIPProcessor, CLIPModel
|
6 |
from os import environ
|
7 |
+
import clip
|
8 |
+
import pickle
|
9 |
+
import requests
|
10 |
+
import torch
|
11 |
+
|
12 |
+
is_gpu = False
|
13 |
+
device = CUDA(0) if is_gpu else "cpu"
|
14 |
|
15 |
# Load the pre-trained model and processor
|
16 |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
40 |
def generate_text(image, model_name):
|
41 |
return get_caption(image, model_name)
|
42 |
|
43 |
+
# get_images = gr.load("ryaalbr/ImageSearch", src="spaces", hf_token=environ["api_key"])
|
44 |
+
# def search_images(text):
|
45 |
+
# return get_images(text, api_name="images")
|
46 |
+
|
47 |
+
emb_filename = 'unsplash-25k-photos-embeddings-indexes.pkl'
|
48 |
+
with open(emb_filename, 'rb') as emb:
|
49 |
+
id2url, img_names, img_emb = pickle.load(emb)
|
50 |
+
|
51 |
+
orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False)
|
52 |
+
|
53 |
+
def search(search_query):
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
# Encode and normalize the description using CLIP
|
57 |
+
text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query))
|
58 |
+
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
59 |
+
|
60 |
+
|
61 |
+
# Retrieve the description vector
|
62 |
+
text_features = text_encoded.cpu().numpy()
|
63 |
+
|
64 |
+
# Compute the similarity between the descrption and each photo using the Cosine similarity
|
65 |
+
similarities = (text_features @ img_emb.T).squeeze(0)
|
66 |
+
|
67 |
+
# Sort the photos by their similarity score
|
68 |
+
best_photos = similarities.argsort()[::-1]
|
69 |
+
best_photos = best_photos[:15]
|
70 |
+
#best_photos = sorted(zip(similarities, range(img_emb.shape[0])), key=lambda x: x[0], reverse=True)
|
71 |
+
|
72 |
+
best_photo_ids = img_names[best_photos]
|
73 |
+
|
74 |
+
imgs = []
|
75 |
+
|
76 |
+
# Iterate over the top 5 results
|
77 |
+
for id in best_photo_ids:
|
78 |
+
|
79 |
+
id, _ = id.split('.')
|
80 |
+
url = id2url.get(id, "")
|
81 |
+
if url == "": continue
|
82 |
+
|
83 |
+
img = url + "?h=512"
|
84 |
+
# r = requests.get(url + "?w=512", stream=True)
|
85 |
+
# img = Image.open(r.raw)
|
86 |
+
#credits = f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>'
|
87 |
+
imgs.append(img)
|
88 |
+
#display(HTML(f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>'))
|
89 |
+
|
90 |
+
if len(imgs) == 5: break
|
91 |
+
|
92 |
+
return imgs
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
with gr.Blocks() as demo:
|
99 |
|
100 |
with gr.Tab("Zero-Shot Classification"):
|
|
|
145 |
desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False)
|
146 |
search_btn = gr.Button("Find Images").style(full_width=False)
|
147 |
gallery = gr.Gallery(show_label=False).style(grid=(2,2,3,5))
|
148 |
+
search_btn.click(search,inputs=desc, outputs=gallery)
|
149 |
|
150 |
demo.launch()
|