Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,8 @@ import torch
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# # Load the pre-trained model and processor
|
15 |
-
|
16 |
-
|
17 |
|
18 |
orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False)
|
19 |
|
@@ -64,10 +64,19 @@ with open(emb_filename, 'rb') as emb:
|
|
64 |
|
65 |
def search(search_query):
|
66 |
|
|
|
|
|
|
|
|
|
67 |
with torch.no_grad():
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
# Retrieve the description vector
|
@@ -136,8 +145,8 @@ with gr.Blocks(css=".caption-text {font-size: 40px !important;}") as demo:
|
|
136 |
label_text.blur(fn=set_labels, inputs=label_text, outputs=labels) # parse list if focus is moved elsewhere; ensures that list is fully parsed before classification
|
137 |
label_text.submit(fn=set_labels, inputs=label_text, outputs=labels) # parse list if user hits enter; ensures that list is fully parsed before classification
|
138 |
get_btn.click(fn=rand_image, outputs=im)
|
139 |
-
im.change(
|
140 |
-
reclass_btn.click(
|
141 |
|
142 |
with gr.Tab("Image Captioning"):
|
143 |
with gr.Row():
|
|
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# # Load the pre-trained model and processor
|
15 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
17 |
|
18 |
orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False)
|
19 |
|
|
|
64 |
|
65 |
def search(search_query):
|
66 |
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
with torch.no_grad():
|
72 |
+
|
73 |
+
# Encode and normalize the description using CLIP (HF CLIP)
|
74 |
+
inputs = processor(text=[text], images=None, return_tensors="pt", padding=True)
|
75 |
+
text_encoded = model.get_text_features(**inputs)
|
76 |
+
|
77 |
+
# # Encode and normalize the description using CLIP (original CLIP)
|
78 |
+
# text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query))
|
79 |
+
# text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
80 |
|
81 |
|
82 |
# Retrieve the description vector
|
|
|
145 |
label_text.blur(fn=set_labels, inputs=label_text, outputs=labels) # parse list if focus is moved elsewhere; ensures that list is fully parsed before classification
|
146 |
label_text.submit(fn=set_labels, inputs=label_text, outputs=labels) # parse list if user hits enter; ensures that list is fully parsed before classification
|
147 |
get_btn.click(fn=rand_image, outputs=im)
|
148 |
+
im.change(predict, inputs=[im, labels], outputs=cf)
|
149 |
+
reclass_btn.click(predict, inputs=[im, labels], outputs=cf)
|
150 |
|
151 |
with gr.Tab("Image Captioning"):
|
152 |
with gr.Row():
|