Spaces:
Runtime error
Runtime error
import gradio as gr | |
from datasets import load_dataset | |
import random | |
import numpy as np | |
from transformers import CLIPProcessor, CLIPModel | |
from os import environ | |
import clip | |
import pickle | |
import requests | |
import torch | |
import os | |
from huggingface_hub import hf_hub_download | |
from torch import nn | |
import torch.nn.functional as nnf | |
import sys | |
from typing import Tuple, List, Union, Optional | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup | |
N = type(None) | |
V = np.array | |
ARRAY = np.ndarray | |
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] | |
VS = Union[Tuple[V, ...], List[V]] | |
VN = Union[V, N] | |
VNS = Union[VS, N] | |
T = torch.Tensor | |
TS = Union[Tuple[T, ...], List[T]] | |
TN = Optional[T] | |
TNS = Union[Tuple[TN, ...], List[TN]] | |
TSN = Optional[TS] | |
TA = Union[T, ARRAY] | |
D = torch.device | |
CPU = torch.device('cpu') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# # Load the pre-trained model and processor | |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
clip_model = clip_model.to(device) | |
#orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False) | |
# Load the Unsplash dataset | |
dataset = load_dataset("jamescalam/unsplash-25k-photos", split="train") # all 25K images are in train split | |
dataset_size = len(dataset) | |
# Load gpt and modifed weights for captions | |
gpt = GPT2LMHeadModel.from_pretrained('gpt2') | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
conceptual_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-conceptual-weights", filename="conceptual_weights.pt") | |
coco_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-COCO-weights", filename="coco_weights.pt") | |
height = 256 # height for resizing images | |
def predict(image, labels): | |
with torch.no_grad(): | |
inputs = clip_processor(text=[f"a photo of {c}" for c in labels], images=image, return_tensors="pt", padding=True).to(device) | |
outputs = clip_model(**inputs) | |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
probs = logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities | |
return {k: float(v) for k, v in zip(labels, probs[0])} | |
# def predict2(image, labels): | |
# image = orig_clip_processor(image).unsqueeze(0).to(device) | |
# text = clip.tokenize(labels).to(device) | |
# with torch.no_grad(): | |
# image_features = orig_clip_model.encode_image(image) | |
# text_features = orig_clip_model.encode_text(text) | |
# logits_per_image, logits_per_text = orig_clip_model(image, text) | |
# probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
# return {k: float(v) for k, v in zip(labels, probs[0])} | |
def rand_image(): | |
n = dataset.num_rows | |
r = random.randrange(0,n) | |
return dataset[r]["photo_image_url"] + f"?h={height}" # Unsplash allows dynamic requests, including size of image | |
def set_labels(text): | |
return text.split(",") | |
# get_caption = gr.load("ryaalbr/caption", src="spaces", hf_token=environ["api_key"]) | |
# def generate_text(image, model_name): | |
# return get_caption(image, model_name) | |
class MLP(nn.Module): | |
def forward(self, x: T) -> T: | |
return self.model(x) | |
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): | |
super(MLP, self).__init__() | |
layers = [] | |
for i in range(len(sizes) -1): | |
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) | |
if i < len(sizes) - 2: | |
layers.append(act()) | |
self.model = nn.Sequential(*layers) | |
class ClipCaptionModel(nn.Module): | |
def get_dummy_token(self, batch_size: int, device: D) -> T: | |
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) | |
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): | |
embedding_text = self.gpt.transformer.wte(tokens) | |
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) | |
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) | |
if labels is not None: | |
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) | |
labels = torch.cat((dummy_token, tokens), dim=1) | |
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) | |
return out | |
def __init__(self, prefix_length: int, prefix_size: int = 512): | |
super(ClipCaptionModel, self).__init__() | |
self.prefix_length = prefix_length | |
self.gpt = gpt | |
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] | |
if prefix_length > 10: # not enough memory | |
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) | |
else: | |
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) | |
#clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) | |
def get_caption(img,model_name): | |
prefix_length = 10 | |
model = ClipCaptionModel(prefix_length) | |
if model_name == "COCO": | |
model_path = coco_weight | |
else: | |
model_path = conceptual_weight | |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) | |
model = model.eval() | |
model = model.to(device) | |
input = clip_processor(images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
prefix = clip_model.get_image_features(**input) | |
# image = preprocess(img).unsqueeze(0).to(device) | |
# with torch.no_grad(): | |
# prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) | |
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
output = model.gpt.generate(inputs_embeds=prefix_embed, | |
num_beams=1, | |
do_sample=False, | |
num_return_sequences=1, | |
no_repeat_ngram_size=1, | |
max_new_tokens = 67, | |
pad_token_id = tokenizer.eos_token_id, | |
eos_token_id = tokenizer.encode('.')[0], | |
renormalize_logits = True) | |
generated_text_prefix = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text_prefix[:-1] if generated_text_prefix[-1] == "." else generated_text_prefix #remove period at end if present | |
# get_images = gr.load("ryaalbr/ImageSearch", src="spaces", hf_token=environ["api_key"]) | |
# def search_images(text): | |
# return get_images(text, api_name="images") | |
emb_filename = 'unsplash-25k-photos-embeddings-indexes.pkl' | |
with open(emb_filename, 'rb') as emb: | |
id2url, img_names, img_emb = pickle.load(emb) | |
def search(search_query): | |
with torch.no_grad(): | |
# Encode and normalize the description using CLIP (HF CLIP) | |
inputs = clip_processor(text=search_query, images=None, return_tensors="pt", padding=True).to(device) | |
text_encoded = clip_model.get_text_features(**inputs) | |
# # Encode and normalize the description using CLIP (original CLIP) | |
# text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query)) | |
# text_encoded /= text_encoded.norm(dim=-1, keepdim=True) | |
# Retrieve the description vector | |
text_features = text_encoded.cpu().numpy() | |
# Compute the similarity between the descrption and each photo using the Cosine similarity | |
similarities = (text_features @ img_emb.T).squeeze(0) | |
# Sort the photos by their similarity score | |
best_photos = similarities.argsort()[::-1] | |
best_photos = best_photos[:15] | |
#best_photos = sorted(zip(similarities, range(img_emb.shape[0])), key=lambda x: x[0], reverse=True) | |
best_photo_ids = img_names[best_photos] | |
imgs = [] | |
# Iterate over the top 5 results | |
for id in best_photo_ids: | |
id, _ = id.split('.') | |
url = id2url.get(id, "") | |
if url == "": continue | |
img = url + "?h=512" | |
# r = requests.get(url + "?w=512", stream=True) | |
# img = Image.open(r.raw) | |
#credits = f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>' | |
imgs.append(img) | |
#display(HTML(f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>')) | |
if len(imgs) == 5: break | |
return imgs | |
with gr.Blocks() as demo: | |
with gr.Tab("Classification"): | |
labels = gr.State([]) # creates hidden component that can store a value and can be used as input/output; here, initial value is an empty list | |
instructions = """## Instructions: | |
1. Enter list of labels separated by commas (or select one of the examples below) | |
2. Click **Get Random Image** to grab a random image from dataset | |
3. Click **Classify Image** to analyze current image against the labels (including after changing labels) | |
""" | |
gr.Markdown(instructions) | |
with gr.Row(variant="compact"): | |
label_text = gr.Textbox(show_label=False, placeholder="Enter classification labels").style(container=False) | |
#submit_btn = gr.Button("Submit").style(full_width=False) | |
gr.Examples(["spring, summer, fall, winter", | |
"mountain, city, beach, ocean, desert, forest, valley", | |
"red, blue, green, white, black, purple, brown", | |
"person, animal, landscape, something else", | |
"day, night, dawn, dusk"], inputs=label_text) | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
im = gr.Image(interactive=False).style(height=height) | |
with gr.Row(): | |
get_btn = gr.Button("Get Random Image").style(full_width=False) | |
class_btn = gr.Button("Classify Image").style(full_width=False) | |
cf = gr.Label() | |
#submit_btn.click(fn=set_labels, inputs=label_text) | |
label_text.change(fn=set_labels, inputs=label_text, outputs=labels) # parse list if changed | |
label_text.blur(fn=set_labels, inputs=label_text, outputs=labels) # parse list if focus is moved elsewhere; ensures that list is fully parsed before classification | |
label_text.submit(fn=set_labels, inputs=label_text, outputs=labels) # parse list if user hits enter; ensures that list is fully parsed before classification | |
get_btn.click(fn=rand_image, outputs=im) | |
#im.change(predict, inputs=[im, labels], outputs=cf) | |
class_btn.click(predict, inputs=[im, labels], outputs=cf) | |
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}") | |
with gr.Tab("Captioning"): | |
instructions = """## Instructions: | |
1. Click **Get Random Image** to grab a random image from dataset | |
1. Click **Create Caption** to generate a caption for the image (usually takes 5-10s but could be over 60s) | |
1. Different models can be selected: | |
* **COCO** generally produces more straight-forward captions, but it is a smaller dataset and therefore struggles to recognize certain objects | |
* **Conceptual Captions** is a much larger dataset but sometimes produces results that resemble social media posts rather than captions | |
""" | |
gr.Markdown(instructions) | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
im_cap = gr.Image(interactive=False).style(height=height) | |
model_name = gr.Radio(choices=["COCO","Conceptual Captions"], type="value", value="COCO", label="Model").style(container=True, item_container = False) | |
with gr.Row(): | |
get_btn_cap = gr.Button("Get Random Image").style(full_width=False) | |
caption_btn = gr.Button("Create Caption").style(full_width=False) | |
caption = gr.Textbox(label='Caption', elem_classes="caption-text") | |
get_btn_cap.click(fn=rand_image, outputs=im_cap) | |
#im_cap.change(generate_text, inputs=im_cap, outputs=caption) | |
caption_btn.click(get_caption, inputs=[im_cap, model_name], outputs=caption) | |
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}") | |
with gr.Tab("Search"): | |
instructions = """## Instructions: | |
1. Enter a search query (or select one of the examples below) | |
2. Click **Find Images** to find images that match the query (top 5 are shown in order from left to right) | |
3. Keep in mind that the dataset contains mostly nature-focused images""" | |
gr.Markdown(instructions) | |
with gr.Column(variant="panel"): | |
desc = gr.Textbox(show_label=False, placeholder="Enter description").style(container=False) | |
gr.Examples(["someone holding flowers", | |
"someone holding pink flowers", | |
"red fruit in a person's hands", | |
"an aerial view of forest", | |
"a waterfall in Iceland with a rainbow" | |
], inputs=desc) | |
search_btn = gr.Button("Find Images").style(full_width=False) | |
gallery = gr.Gallery(show_label=False).style(grid=(2,2,3,5)) | |
search_btn.click(search,inputs=desc, outputs=gallery, postprocess=False) | |
gr.HTML(f"Dataset: <a href='https://github.com/unsplash/datasets' target='_blank'>Unsplash Lite</a>; Number of Images: {dataset_size}") | |
demo.queue(concurrency_count=3) | |
demo.launch() |