Spaces:
Runtime error
Runtime error
import gradio as gr | |
import clip | |
import pickle | |
import requests | |
from PIL import Image | |
import numpy as np | |
import torch | |
is_gpu = False | |
device = CUDA(0) if is_gpu else "cpu" | |
from datasets import load_dataset | |
dataset = load_dataset("jamescalam/unsplash-25k-photos", split="train") | |
emb_filename = 'unsplash-25k-photos-embeddings-indexes.pkl' | |
with open(emb_filename, 'rb') as emb: | |
id2url, img_names, img_emb = pickle.load(emb) | |
orig_clip_model, orig_clip_processor = clip.load("ViT-B/32", device=device, jit=False) | |
def search(search_query): | |
with torch.no_grad(): | |
# Encode and normalize the description using CLIP | |
text_encoded = orig_clip_model.encode_text(clip.tokenize(search_query)) | |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True) | |
# Retrieve the description vector | |
text_features = text_encoded.cpu().numpy() | |
# Compute the similarity between the descrption and each photo using the Cosine similarity | |
similarities = (text_features @ img_emb.T).squeeze(0) | |
# Sort the photos by their similarity score | |
best_photos = similarities.argsort()[::-1] | |
best_photos = best_photos[:15] | |
#best_photos = sorted(zip(similarities, range(img_emb.shape[0])), key=lambda x: x[0], reverse=True) | |
best_photo_ids = img_names[best_photos] | |
imgs = [] | |
# Iterate over the top 5 results | |
for id in best_photo_ids: | |
id, _ = id.split('.') | |
url = id2url.get(id, "") | |
if url == "": continue | |
img = url + "?h=512" | |
# r = requests.get(url + "?w=512", stream=True) | |
# img = Image.open(r.raw) | |
#credits = f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>' | |
imgs.append(img) | |
#display(HTML(f'Photo by <a href="https://unsplash.com/@{photo["photographer_username"]}?utm_source=NaturalLanguageImageSearch&utm_medium=referral">{photo["photographer_first_name"]} {photo["photographer_last_name"]}</a> on <a href="https://unsplash.com/?utm_source=NaturalLanguageImageSearch&utm_medium=referral">Unsplash</a>')) | |
if len(imgs) == 5: break | |
return imgs | |
with gr.Blocks() as demo: | |
with gr.Column(variant="panel"): | |
with gr.Row(variant="compact"): | |
text = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
).style( | |
container=False, | |
) | |
search_btn = gr.Button("Search for images").style(full_width=False) | |
gallery = gr.Gallery(label="Generated images", show_label=False).style(grid=[3,3,5]) | |
search_btn.click(search, text, gallery, api_name="images") | |
#search_btn.click(search, text, temp, api_name="list") | |
demo.launch() |