Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import os | |
import torch | |
import torch.distributed as dist | |
from global_local.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized | |
from global_local.common.logger import MetricLogger, SmoothedValue | |
from global_local.common.registry import registry | |
from global_local.datasets.data_utils import prepare_sample | |
class BaseTask: | |
def __init__(self, **kwargs): | |
super().__init__() | |
self.inst_id_key = "instance_id" | |
def setup_task(cls, **kwargs): | |
return cls() | |
def build_model(self, cfg): | |
model_config = cfg.model_cfg | |
model_cls = registry.get_model_class(model_config.arch) | |
return model_cls.from_config(model_config) | |
def build_datasets(self, cfg): | |
""" | |
Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. | |
Download dataset and annotations automatically if not exist. | |
Args: | |
cfg (common.config.Config): _description_ | |
Returns: | |
dict: Dictionary of torch.utils.data.Dataset objects by split. | |
""" | |
datasets = dict() | |
datasets_config = cfg.datasets_cfg | |
assert len(datasets_config) > 0, "At least one dataset has to be specified." | |
for name in datasets_config: | |
dataset_config = datasets_config[name] | |
builder = registry.get_builder_class(name)(dataset_config) | |
dataset = builder.build_datasets() | |
dataset['train'].name = name | |
if 'sample_ratio' in dataset_config: | |
dataset['train'].sample_ratio = dataset_config.sample_ratio | |
datasets[name] = dataset | |
return datasets | |
def train_step(self, model, samples): | |
loss = model(samples)["loss"] | |
return loss | |
def valid_step(self, model, samples): | |
raise NotImplementedError | |
def before_evaluation(self, model, dataset, **kwargs): | |
model.before_evaluation(dataset=dataset, task_type=type(self)) | |
def after_evaluation(self, **kwargs): | |
pass | |
def inference_step(self): | |
raise NotImplementedError | |
def evaluation(self, model, data_loader, cuda_enabled=True): | |
metric_logger = MetricLogger(delimiter=" ") | |
header = "Evaluation" | |
# TODO make it configurable | |
print_freq = 10 | |
results = [] | |
for samples in metric_logger.log_every(data_loader, print_freq, header): | |
samples = prepare_sample(samples, cuda_enabled=cuda_enabled) | |
eval_output = self.valid_step(model=model, samples=samples) | |
results.extend(eval_output) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
return results | |
def train_epoch( | |
self, | |
epoch, | |
model, | |
data_loader, | |
optimizer, | |
lr_scheduler, | |
scaler=None, | |
cuda_enabled=False, | |
log_freq=50, | |
accum_grad_iters=1, | |
): | |
return self._train_inner_loop( | |
epoch=epoch, | |
iters_per_epoch=lr_scheduler.iters_per_epoch, | |
model=model, | |
data_loader=data_loader, | |
optimizer=optimizer, | |
scaler=scaler, | |
lr_scheduler=lr_scheduler, | |
log_freq=log_freq, | |
cuda_enabled=cuda_enabled, | |
accum_grad_iters=accum_grad_iters, | |
) | |
def train_iters( | |
self, | |
epoch, | |
start_iters, | |
iters_per_inner_epoch, | |
model, | |
data_loader, | |
optimizer, | |
lr_scheduler, | |
scaler=None, | |
cuda_enabled=False, | |
log_freq=50, | |
accum_grad_iters=1, | |
): | |
return self._train_inner_loop( | |
epoch=epoch, | |
start_iters=start_iters, | |
iters_per_epoch=iters_per_inner_epoch, | |
model=model, | |
data_loader=data_loader, | |
optimizer=optimizer, | |
scaler=scaler, | |
lr_scheduler=lr_scheduler, | |
log_freq=log_freq, | |
cuda_enabled=cuda_enabled, | |
accum_grad_iters=accum_grad_iters, | |
) | |
def _train_inner_loop( | |
self, | |
epoch, | |
iters_per_epoch, | |
model, | |
data_loader, | |
optimizer, | |
lr_scheduler, | |
scaler=None, | |
start_iters=None, | |
log_freq=50, | |
cuda_enabled=False, | |
accum_grad_iters=1, | |
): | |
""" | |
An inner training loop compatible with both epoch-based and iter-based training. | |
When using epoch-based, training stops after one epoch; when using iter-based, | |
training stops after #iters_per_epoch iterations. | |
""" | |
use_amp = scaler is not None | |
if not hasattr(data_loader, "__next__"): | |
# convert to iterator if not already | |
data_loader = iter(data_loader) | |
metric_logger = MetricLogger(delimiter=" ") | |
metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) | |
metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) | |
# if iter-based runner, schedule lr based on inner epoch. | |
logging.info( | |
"Start training epoch {}, {} iters per inner epoch.".format( | |
epoch, iters_per_epoch | |
) | |
) | |
header = "Train: data epoch: [{}]".format(epoch) | |
if start_iters is None: | |
# epoch-based runner | |
inner_epoch = epoch | |
else: | |
# In iter-based runner, we schedule the learning rate based on iterations. | |
inner_epoch = start_iters // iters_per_epoch | |
header = header + "; inner epoch [{}]".format(inner_epoch) | |
for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): | |
# if using iter-based runner, we stop after iters_per_epoch iterations. | |
if i >= iters_per_epoch: | |
break | |
samples = next(data_loader) | |
samples = prepare_sample(samples, cuda_enabled=cuda_enabled) | |
samples.update( | |
{ | |
"epoch": inner_epoch, | |
"num_iters_per_epoch": iters_per_epoch, | |
"iters": i, | |
} | |
) | |
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) | |
with torch.cuda.amp.autocast(enabled=use_amp): | |
loss = self.train_step(model=model, samples=samples) | |
# after_train_step() | |
if use_amp: | |
scaler.scale(loss).backward() | |
else: | |
loss.backward() | |
# update gradients every accum_grad_iters iterations | |
if (i + 1) % accum_grad_iters == 0: | |
if use_amp: | |
scaler.step(optimizer) | |
scaler.update() | |
else: | |
optimizer.step() | |
optimizer.zero_grad() | |
metric_logger.update(loss=loss.item()) | |
metric_logger.update(lr=optimizer.param_groups[0]["lr"]) | |
# after train_epoch() | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
logging.info("Averaged stats: " + str(metric_logger.global_avg())) | |
return { | |
k: "{:.3f}".format(meter.global_avg) | |
for k, meter in metric_logger.meters.items() | |
} | |
def save_result(result, result_dir, filename, remove_duplicate=""): | |
import json | |
result_file = os.path.join( | |
result_dir, "%s_rank%d.json" % (filename, get_rank()) | |
) | |
final_result_file = os.path.join(result_dir, "%s.json" % filename) | |
json.dump(result, open(result_file, "w")) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
if is_main_process(): | |
logging.warning("rank %d starts merging results." % get_rank()) | |
# combine results from all processes | |
result = [] | |
for rank in range(get_world_size()): | |
result_file = os.path.join( | |
result_dir, "%s_rank%d.json" % (filename, rank) | |
) | |
res = json.load(open(result_file, "r")) | |
result += res | |
if remove_duplicate: | |
result_new = [] | |
id_list = [] | |
for res in result: | |
if res[remove_duplicate] not in id_list: | |
id_list.append(res[remove_duplicate]) | |
result_new.append(res) | |
result = result_new | |
json.dump(result, open(final_result_file, "w")) | |
print("result file saved to %s" % final_result_file) | |
return final_result_file | |