Spaces:
Sleeping
Sleeping
""" | |
Adapted from salesforce@LAVIS Vision-CAIR@MiniGPT-4. Below is the original copyright: | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
from omegaconf import OmegaConf | |
from global_local.common.registry import registry | |
from global_local.models.base_model import BaseModel | |
from global_local.models.blip2 import Blip2Base | |
from global_local.models.video_instruction_ft_model import VideoInstructionFTLLAMA | |
from global_local.processors.base_processor import BaseProcessor | |
__all__ = [ | |
"load_model", | |
"BaseModel", | |
"Blip2Base", | |
"VideoInstructionFTLLAMA" | |
] | |
def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None): | |
""" | |
Load supported models. | |
To list all available models and types in registry: | |
>>> from video_llama.models import model_zoo | |
>>> print(model_zoo) | |
Args: | |
name (str): name of the model. | |
model_type (str): type of the model. | |
is_eval (bool): whether the model is in eval mode. Default: False. | |
device (str): device to use. Default: "cpu". | |
checkpoint (str): path or to checkpoint. Default: None. | |
Note that expecting the checkpoint to have the same keys in state_dict as the model. | |
Returns: | |
model (torch.nn.Module): model. | |
""" | |
model = registry.get_model_class(name).from_pretrained(model_type=model_type) | |
if checkpoint is not None: | |
model.load_checkpoint(checkpoint) | |
if is_eval: | |
model.eval() | |
if device == "cpu": | |
model = model.float() | |
return model.to(device) | |
def load_preprocess(config): | |
""" | |
Load preprocessor configs and construct preprocessors. | |
If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing. | |
Args: | |
config (dict): preprocessor configs. | |
Returns: | |
vis_processors (dict): preprocessors for visual inputs. | |
txt_processors (dict): preprocessors for text inputs. | |
Key is "train" or "eval" for processors used in training and evaluation respectively. | |
""" | |
def _build_proc_from_cfg(cfg): | |
return ( | |
registry.get_processor_class(cfg.name).from_config(cfg) | |
if cfg is not None | |
else BaseProcessor() | |
) | |
vis_processors = dict() | |
txt_processors = dict() | |
vis_proc_cfg = config.get("vis_processor") | |
txt_proc_cfg = config.get("text_processor") | |
if vis_proc_cfg is not None: | |
vis_train_cfg = vis_proc_cfg.get("train") | |
vis_eval_cfg = vis_proc_cfg.get("eval") | |
else: | |
vis_train_cfg = None | |
vis_eval_cfg = None | |
vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg) | |
vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg) | |
if txt_proc_cfg is not None: | |
txt_train_cfg = txt_proc_cfg.get("train") | |
txt_eval_cfg = txt_proc_cfg.get("eval") | |
else: | |
txt_train_cfg = None | |
txt_eval_cfg = None | |
txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg) | |
txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg) | |
return vis_processors, txt_processors | |
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"): | |
""" | |
Load model and its related preprocessors. | |
List all available models and types in registry: | |
>>> from video_llama.models import model_zoo | |
>>> print(model_zoo) | |
Args: | |
name (str): name of the model. | |
model_type (str): type of the model. | |
is_eval (bool): whether the model is in eval mode. Default: False. | |
device (str): device to use. Default: "cpu". | |
Returns: | |
model (torch.nn.Module): model. | |
vis_processors (dict): preprocessors for visual inputs. | |
txt_processors (dict): preprocessors for text inputs. | |
""" | |
model_cls = registry.get_model_class(name) | |
# load model | |
model = model_cls.from_pretrained(model_type=model_type) | |
if is_eval: | |
model.eval() | |
# load preprocess | |
cfg = OmegaConf.load(model_cls.default_config_path(model_type)) | |
if cfg is not None: | |
preprocess_cfg = cfg.preprocess | |
vis_processors, txt_processors = load_preprocess(preprocess_cfg) | |
else: | |
vis_processors, txt_processors = None, None | |
logging.info( | |
f"""No default preprocess for model {name} ({model_type}). | |
This can happen if the model is not finetuned on downstream datasets, | |
or it is not intended for direct use without finetuning. | |
""" | |
) | |
if device == "cpu" or device == torch.device("cpu"): | |
model = model.float() | |
return model.to(device), vis_processors, txt_processors | |
class ModelZoo: | |
""" | |
A utility class to create string representation of available model architectures and types. | |
>>> from video_llama.models import model_zoo | |
>>> # list all available models | |
>>> print(model_zoo) | |
>>> # show total number of models | |
>>> print(len(model_zoo)) | |
""" | |
def __init__(self) -> None: | |
self.model_zoo = { | |
k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys()) | |
for k, v in registry.mapping["model_name_mapping"].items() | |
} | |
def __str__(self) -> str: | |
return ( | |
"=" * 50 | |
+ "\n" | |
+ f"{'Architectures':<30} {'Types'}\n" | |
+ "=" * 50 | |
+ "\n" | |
+ "\n".join( | |
[ | |
f"{name:<30} {', '.join(types)}" | |
for name, types in self.model_zoo.items() | |
] | |
) | |
) | |
def __iter__(self): | |
return iter(self.model_zoo.items()) | |
def __len__(self): | |
return sum([len(v) for v in self.model_zoo.values()]) | |
model_zoo = ModelZoo() | |