Spaces:
Running
Running
import subprocess as sp | |
import os | |
from huggingface_hub import snapshot_download | |
# Download if not exists | |
os.makedirs("checkpoints", exist_ok=True) | |
snapshot_download(repo_id="fishaudio/fish-speech-1", local_dir="./checkpoints/fish-speech-1") | |
print("All checkpoints downloaded") | |
import html | |
import os | |
import threading | |
from argparse import ArgumentParser | |
from pathlib import Path | |
import gradio as gr | |
import librosa | |
import torch | |
from loguru import logger | |
from transformers import AutoTokenizer | |
from tools.llama.generate import launch_thread_safe_queue | |
from tools.vqgan.inference import load_model as load_vqgan_model | |
# Make einx happy | |
os.environ["EINX_FILTER_TRACEBACK"] = "false" | |
HEADER_MD = """# Fish Speech | |
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio). | |
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成. | |
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1). | |
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型. | |
Related code are released under BSD-3-Clause License, and weights are released under CC BY-NC-SA 4.0 License. | |
相关代码使用 BSD-3-Clause 许可证发布,权重使用 CC BY-NC-SA 4.0 许可证发布. | |
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it. | |
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规. | |
""" | |
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本.""" | |
try: | |
import spaces | |
GPU_DECORATOR = spaces.GPU | |
except ImportError: | |
def GPU_DECORATOR(func): | |
def wrapper(*args, **kwargs): | |
return func(*args, **kwargs) | |
return wrapper | |
def build_html_error_message(error): | |
return f""" | |
<div style="color: red; | |
font-weight: bold;"> | |
{html.escape(error)} | |
</div> | |
""" | |
def inference( | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_k, | |
top_p, | |
repetition_penalty, | |
temperature, | |
speaker, | |
): | |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length: | |
return None, f"Text is too long, please keep it under {args.max_gradio_length} characters." | |
# Parse reference audio aka prompt | |
prompt_tokens = None | |
if enable_reference_audio and reference_audio is not None: | |
# reference_audio_sr, reference_audio_content = reference_audio | |
reference_audio_content, _ = librosa.load( | |
reference_audio, sr=vqgan_model.sampling_rate, mono=True | |
) | |
audios = torch.from_numpy(reference_audio_content).to(vqgan_model.device)[ | |
None, None, : | |
] | |
logger.info( | |
f"Loaded audio with {audios.shape[2] / vqgan_model.sampling_rate:.2f} seconds" | |
) | |
# VQ Encoder | |
audio_lengths = torch.tensor( | |
[audios.shape[2]], device=vqgan_model.device, dtype=torch.long | |
) | |
prompt_tokens = vqgan_model.encode(audios, audio_lengths)[0][0] | |
# LLAMA Inference | |
request = dict( | |
tokenizer=llama_tokenizer, | |
device=vqgan_model.device, | |
max_new_tokens=max_new_tokens, | |
text=text, | |
top_k=int(top_k) if top_k > 0 else None, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
temperature=temperature, | |
compile=args.compile, | |
iterative_prompt=chunk_length > 0, | |
chunk_length=chunk_length, | |
max_length=args.max_length, | |
speaker=speaker if speaker else None, | |
prompt_tokens=prompt_tokens if enable_reference_audio else None, | |
prompt_text=reference_text if enable_reference_audio else None, | |
) | |
payload = dict( | |
event=threading.Event(), | |
request=request, | |
) | |
llama_queue.put(payload) | |
# Wait for the result | |
payload["event"].wait() | |
if payload["success"] is False: | |
raise payload["response"] | |
codes = payload["response"][0] | |
# VQGAN Inference | |
feature_lengths = torch.tensor([codes.shape[1]], device=vqgan_model.device) | |
fake_audios = vqgan_model.decode( | |
indices=codes[None], feature_lengths=feature_lengths, return_audios=True | |
)[0, 0] | |
fake_audios = fake_audios.float().cpu().numpy() | |
return (vqgan_model.sampling_rate, fake_audios), None | |
def build_app(): | |
with gr.Blocks(theme=gr.themes.Base()) as app: | |
gr.Markdown(HEADER_MD) | |
# Use light theme by default | |
app.load( | |
None, | |
None, | |
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', 'light');window.location.search = params.toString();}}", | |
) | |
# Inference | |
with gr.Row(): | |
with gr.Column(scale=3): | |
text = gr.Textbox( | |
label="Input Text / 输入文本", placeholder=TEXTBOX_PLACEHOLDER, lines=15 | |
) | |
with gr.Row(): | |
with gr.Tab(label="Advanced Config / 高级参数"): | |
chunk_length = gr.Slider( | |
label="Iterative Prompt Length, 0 means off / 迭代提示长度,0 表示关闭", | |
minimum=0, | |
maximum=100, | |
value=30, | |
step=8, | |
) | |
max_new_tokens = gr.Slider( | |
label="Maximum tokens per batch, 0 means no limit / 每批最大令牌数,0 表示无限制", | |
minimum=128, | |
maximum=512, | |
value=512, # 0 means no limit | |
step=8, | |
) | |
top_k = gr.Slider( | |
label="Top-K", minimum=0, maximum=5, value=0, step=1 | |
) | |
top_p = gr.Slider( | |
label="Top-P", minimum=0, maximum=1, value=0.7, step=0.01 | |
) | |
repetition_penalty = gr.Slider( | |
label="Repetition Penalty", | |
minimum=0, | |
maximum=2, | |
value=1.5, | |
step=0.01, | |
) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=2, | |
value=0.7, | |
step=0.01, | |
) | |
speaker = gr.Textbox( | |
label="Speaker / 说话人", | |
placeholder="Type name of the speaker / 输入说话人的名称", | |
lines=1, | |
) | |
with gr.Tab(label="Reference Audio / 参考音频"): | |
gr.Markdown( | |
"5 to 10 seconds of reference audio, useful for specifying speaker. \n5 到 10 秒的参考音频,适用于指定音色。" | |
) | |
enable_reference_audio = gr.Checkbox( | |
label="Enable Reference Audio / 启用参考音频", | |
) | |
reference_audio = gr.Audio( | |
label="Reference Audio / 参考音频", | |
type="filepath", | |
) | |
reference_text = gr.Textbox( | |
label="Reference Text / 参考文本", | |
placeholder="参考文本", | |
lines=1, | |
) | |
with gr.Column(scale=3): | |
with gr.Row(): | |
error = gr.HTML(label="Error Message / 错误信息") | |
with gr.Row(): | |
audio = gr.Audio(label="Generated Audio / 音频", type="numpy") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
generate = gr.Button( | |
value="\U0001F3A7 Generate / 合成", variant="primary" | |
) | |
# # Submit | |
generate.click( | |
inference, | |
[ | |
text, | |
enable_reference_audio, | |
reference_audio, | |
reference_text, | |
max_new_tokens, | |
chunk_length, | |
top_k, | |
top_p, | |
repetition_penalty, | |
temperature, | |
speaker, | |
], | |
[audio, error], | |
concurrency_limit=1, | |
) | |
return app | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument( | |
"--llama-checkpoint-path", | |
type=Path, | |
default="checkpoints/text2semantic-sft-large-v1-4k.pth", | |
) | |
parser.add_argument( | |
"--llama-config-name", type=str, default="dual_ar_2_codebook_large" | |
) | |
parser.add_argument( | |
"--vqgan-checkpoint-path", | |
type=Path, | |
default="checkpoints/vq-gan-group-fsq-2x1024.pth", | |
) | |
parser.add_argument("--vqgan-config-name", type=str, default="vqgan_pretrain") | |
parser.add_argument("--tokenizer", type=str, default="fishaudio/fish-speech-1") | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--half", action="store_true") | |
parser.add_argument("--max-length", type=int, default=2048) | |
parser.add_argument("--compile", action="store_true") | |
parser.add_argument("--max-gradio-length", type=int, default=0) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
args.precision = torch.half if args.half else torch.bfloat16 | |
args.compile = True | |
args.max_gradio_length = 1024 | |
args.tokenizer = "./checkpoints/fish-speech-1" | |
args.llama_checkpoint_path = "./checkpoints/text2semantic-sft-large-v1-4k.pth" | |
args.llama_config_name = "dual_ar_2_codebook_large" | |
args.vqgan_checkpoint_path = "./checkpoints/vq-gan-group-fsq-2x1024.pth" | |
args.vqgan_config_name = "vqgan_pretrain" | |
logger.info("Loading Llama model...") | |
llama_queue = launch_thread_safe_queue( | |
config_name=args.llama_config_name, | |
checkpoint_path=args.llama_checkpoint_path, | |
device=args.device, | |
precision=args.precision, | |
max_length=args.max_length, | |
compile=args.compile, | |
) | |
llama_tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) | |
logger.info("Llama model loaded, loading VQ-GAN model...") | |
vqgan_model = load_vqgan_model( | |
config_name=args.vqgan_config_name, | |
checkpoint_path=args.vqgan_checkpoint_path, | |
device=args.device, | |
) | |
logger.info("VQ-GAN model loaded, warming up...") | |
# Dry run to check if the model is loaded correctly and avoid the first-time latency | |
inference( | |
text="Hello, world!", | |
enable_reference_audio=False, | |
reference_audio=None, | |
reference_text="", | |
max_new_tokens=0, | |
chunk_length=0, | |
top_k=0, # 0 means no limit | |
top_p=0.7, | |
repetition_penalty=1.5, | |
temperature=0.7, | |
speaker=None, | |
) | |
logger.info("Warming up done, launching the web UI...") | |
app = build_app() | |
app.launch(show_api=False) | |