amharic_con / app.py
ruthtamiru's picture
final_update
a8d2b76 verified
raw
history blame
5.3 kB
# import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread
model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
llama_am = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=64):
history = []
for sent, received in chat_history:
history.append({"role": "user", "content": sent})
history.append({"role": "assistant", "content": received})
history.append({"role": "user", "content": message})
#print(history)
if len(tokenizer.apply_chat_template(history)) > 512:
yield "chat history is too long"
else:
# Streamer
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
thread = Thread(target=llama_am,
kwargs={
"text_inputs":history,
"max_new_tokens":max_new_tokens,
"repetition_penalty":1.15,
"streamer":streamer
}
)
thread.start()
generated_text = ""
for word in streamer:
generated_text += word
response = generated_text.strip()
yield response
# Chat interface with gradio
with gr.Blocks() as demo:
gr.Markdown("""
# Llama 3.2 180M Amharic Chatbot Demo
This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model.
""")
tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")
chatbot = gr.ChatInterface(
chatbot=gr.Chatbot(height=400),
fn=generate,
additional_inputs=[tokens_slider],
stop_btn=None,
cache_examples=False,
examples=[
["แˆฐแˆ‹แˆแฃ แŠฅแŠ•แ‹ดแ‰ต แŠแˆ…?"],
["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
["แ‹จแŠขแ‰ตแ‹ฎแŒตแ‹ซ แ‹จแˆ˜แŒจแˆจแˆปแ‹ แŠ•แŒ‰แˆต แˆ›แŠ• แŠแ‰ แˆฉ?"],
["แ‹จแŠ แˆ›แˆญแŠ› แŒแŒฅแˆ แƒแแˆแŠ"],
["แ‰ฐแˆจแ‰ต แŠ•แŒˆแˆจแŠ\n\nแŒ…แ‰ฅแŠ“ แŠ แŠ•แ‰ แˆณ"],
["แŠ แŠ•แ‹ต แŠ แˆตแ‰‚แŠ แ‰€แˆแ‹ต แŠ•แŒˆแˆจแŠ"],
["แ‹จแ‰ฐแˆฐแŒ แ‹ แŒฝแˆ‘แ แŠ แˆตแ‰ฐแ‹ซแ‹จแ‰ต แˆแŠ• แŠ แ‹ญแŠแ‰ต แŠแ‹? 'แŠ แ‹ŽแŠ•แ‰ณแ‹Š'แฃ 'แŠ แˆ‰แ‰ณแ‹Š' แ‹ˆแ‹ญแˆ 'แŒˆแˆˆแˆแ‰ฐแŠ›' แ‹จแˆšแˆ แˆแˆ‹แˆฝ แˆตแŒฅแข 'แŠ แˆชแ แŠแˆแˆ แŠแ‰ แˆญ'"],
["แ‹จแˆแˆจแŠ•แˆณแ‹ญ แ‹‹แŠ“ แŠจแ‰ฐแˆ› แˆตแˆ แˆแŠ•แ‹ตแŠ• แŠแ‹?"],
["แŠ แˆแŠ• แ‹จแŠ แˆœแˆชแŠซ แ•แˆฌแ‹šแ‹ณแŠ•แ‰ต แˆ›แŠ• แŠแ‹?"],
["แˆถแˆตแ‰ต แ‹จแŠ แแˆชแŠซ แˆ€แŒˆแˆซแ‰ต แŒฅแ‰€แˆตแˆแŠ"],
["3 แ‹จแŠ แˆœแˆชแŠซ แˆ˜แˆชแ‹Žแ‰ฝแŠ• แˆตแˆ แŒฅแ‰€แˆต"],
["5 แ‹จแŠ แˆœแˆชแŠซ แŠจแ‰ฐแˆ›แ‹Žแ‰ฝแŠ• แŒฅแ‰€แˆต"],
["แŠ แˆแˆตแ‰ต แ‹จแŠ แ‹แˆฎแ“ แˆ€แŒˆแˆฎแ‰ฝแŠ• แŒฅแ‰€แˆตแˆแŠ"],
["แ‰  แ‹“แˆˆแˆ แˆ‹แ‹ญ แ‹ซแˆ‰แ‰ตแŠ• 7 แŠ แˆ…แŒ‰แˆซแ‰ต แŠ•แŒˆแˆจแŠ"]
]
)
demo.queue().launch(debug=True,share=True)
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()