Spaces:
Sleeping
Sleeping
# import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline | |
from threading import Thread | |
model_id = "rasyosef/Llama-3.2-180M-Amharic-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
llama_am = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
# Function that accepts a prompt and generates text using the phi2 pipeline | |
def generate(message, chat_history, max_new_tokens=64): | |
history = [] | |
for sent, received in chat_history: | |
history.append({"role": "user", "content": sent}) | |
history.append({"role": "assistant", "content": received}) | |
history.append({"role": "user", "content": message}) | |
#print(history) | |
if len(tokenizer.apply_chat_template(history)) > 512: | |
yield "chat history is too long" | |
else: | |
# Streamer | |
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0) | |
thread = Thread(target=llama_am, | |
kwargs={ | |
"text_inputs":history, | |
"max_new_tokens":max_new_tokens, | |
"repetition_penalty":1.15, | |
"streamer":streamer | |
} | |
) | |
thread.start() | |
generated_text = "" | |
for word in streamer: | |
generated_text += word | |
response = generated_text.strip() | |
yield response | |
# Chat interface with gradio | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Llama 3.2 180M Amharic Chatbot Demo | |
This chatbot was created using [Llama-3.2-180M-Amharic-Instruct](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic-Instruct), a finetuned version of my 180 million parameter [Llama 3.2 180M Amharic](https://huggingface.co/rasyosef/Llama-3.2-180M-Amharic) transformer model. | |
""") | |
tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.") | |
chatbot = gr.ChatInterface( | |
chatbot=gr.Chatbot(height=400), | |
fn=generate, | |
additional_inputs=[tokens_slider], | |
stop_btn=None, | |
cache_examples=False, | |
examples=[ | |
["แฐแแแฃ แฅแแดแต แแ ?"], | |
["แจแขแตแฎแตแซ แแ แจแฐแ แตแ แแแตแ แแ?"], | |
["แจแขแตแฎแตแซ แจแแจแจแปแ แแแต แแ แแ แฉ?"], | |
["แจแ แแญแ แแฅแ แแแแ"], | |
["แฐแจแต แแแจแ\n\nแ แฅแ แ แแ แณ"], | |
["แ แแต แ แตแแ แแแต แแแจแ"], | |
["แจแฐแฐแ แ แฝแแ แ แตแฐแซแจแต แแ แ แญแแต แแ? 'แ แแแณแ'แฃ 'แ แแณแ' แแญแ 'แแแแฐแ' แจแแ แแแฝ แตแฅแข 'แ แชแ แแแ แแ แญ'"], | |
["แจแแจแแณแญ แแ แจแฐแ แตแ แแแตแ แแ?"], | |
["แ แแ แจแ แแชแซ แแฌแแณแแต แแ แแ?"], | |
["แถแตแต แจแ แแชแซ แแแซแต แฅแแตแแ"], | |
["3 แจแ แแชแซ แแชแแฝแ แตแ แฅแแต"], | |
["5 แจแ แแชแซ แจแฐแแแฝแ แฅแแต"], | |
["แ แแตแต แจแ แแฎแ แแแฎแฝแ แฅแแตแแ"], | |
["แ แแแ แแญ แซแแตแ 7 แ แ แแซแต แแแจแ"] | |
] | |
) | |
demo.queue().launch(debug=True,share=True) | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |