Spaces:
Runtime error
Runtime error
rusticluftig
commited on
Commit
β’
4baa143
1
Parent(s):
0d9018c
Working starting point
Browse files- app.py +201 -133
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import bittensor as bt
|
3 |
-
import
|
4 |
from bittensor.extrinsics.serving import get_metadata
|
5 |
from dataclasses import dataclass
|
6 |
import requests
|
@@ -9,17 +9,21 @@ import math
|
|
9 |
import os
|
10 |
import datetime
|
11 |
import time
|
|
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
from huggingface_hub import HfApi
|
14 |
from apscheduler.schedulers.background import BackgroundScheduler
|
15 |
|
16 |
load_dotenv()
|
17 |
|
18 |
-
FONT =
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
|
24 |
VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
|
25 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
@@ -30,10 +34,9 @@ MAX_AVG_LOSS_POINTS = 1
|
|
30 |
RETRIES = 5
|
31 |
DELAY_SECS = 3
|
32 |
NETUID = 9
|
33 |
-
# TODO: Update this for SN 9.
|
34 |
-
SUBNET_START_BLOCK = 2225782
|
35 |
SECONDS_PER_BLOCK = 12
|
36 |
|
|
|
37 |
@dataclass
|
38 |
class ModelData:
|
39 |
uid: int
|
@@ -47,7 +50,15 @@ class ModelData:
|
|
47 |
emission: float
|
48 |
|
49 |
@classmethod
|
50 |
-
def from_compressed_str(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""Returns an instance of this class from a compressed string representation"""
|
52 |
tokens = cs.split(":")
|
53 |
return ModelData(
|
@@ -59,9 +70,10 @@ class ModelData:
|
|
59 |
hash=tokens[3] if tokens[3] != "None" else None,
|
60 |
block=block,
|
61 |
incentive=incentive,
|
62 |
-
emission=emission
|
63 |
)
|
64 |
|
|
|
65 |
def run_with_retries(func, *args, **kwargs):
|
66 |
for i in range(0, RETRIES):
|
67 |
try:
|
@@ -72,17 +84,30 @@ def run_with_retries(func, *args, **kwargs):
|
|
72 |
time.sleep(DELAY_SECS)
|
73 |
raise RuntimeError("Should never happen")
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
return subtensor, metagraph
|
|
|
80 |
return run_with_retries(_internal)
|
81 |
|
|
|
82 |
def get_tao_price() -> float:
|
83 |
-
return run_with_retries(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
def get_validator_weights(
|
|
|
|
|
|
|
86 |
ret = {}
|
87 |
for uid in metagraph.uids.tolist():
|
88 |
vtrust = metagraph.validator_trust[uid].item()
|
@@ -96,7 +121,10 @@ def get_validator_weights(metagraph: bt.metagraph) -> typing.Dict[int, typing.Tu
|
|
96 |
ret[uid][-1][ouid] = weight
|
97 |
return ret
|
98 |
|
99 |
-
|
|
|
|
|
|
|
100 |
result = []
|
101 |
for uid in metagraph.uids.tolist():
|
102 |
hotkey = metagraph.hotkeys[uid]
|
@@ -109,62 +137,75 @@ def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.
|
|
109 |
chain_str = bytes.fromhex(hex_data).decode()
|
110 |
block = metadata["block"]
|
111 |
incentive = metagraph.incentive[uid].nan_to_num().item()
|
112 |
-
emission =
|
|
|
|
|
113 |
|
114 |
model_data = None
|
115 |
try:
|
116 |
-
model_data = ModelData.from_compressed_str(
|
|
|
|
|
117 |
except:
|
118 |
continue
|
119 |
|
120 |
result.append(model_data)
|
121 |
return result
|
122 |
|
|
|
123 |
def is_floatable(x) -> bool:
|
124 |
-
return (
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
else:
|
133 |
-
data = [float(x) for x in data if is_floatable(x)]
|
134 |
-
if len(data) > 0:
|
135 |
-
return float(data[-1]), False
|
136 |
-
return None, False
|
137 |
-
|
138 |
-
def get_scores(uids: typing.List[int]) -> typing.Dict[int, typing.Dict[str, typing.Optional[float]]]:
|
139 |
api = wandb.Api(api_key=WANDB_TOKEN)
|
140 |
-
runs = list(
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
145 |
|
146 |
result = {}
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
for uid in uids:
|
150 |
if uid in result:
|
151 |
continue
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
if len(result
|
164 |
break
|
165 |
return result
|
166 |
|
167 |
-
|
|
|
168 |
if uid in scores:
|
169 |
if key in scores[uid]:
|
170 |
point = scores[uid][key]
|
@@ -172,102 +213,129 @@ def format_score(uid: int, scores, key) -> typing.Optional[float]:
|
|
172 |
return round(scores[uid][key], 4)
|
173 |
return None
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
180 |
|
181 |
def get_next_update_div(current_block: int, next_update_block: int) -> str:
|
182 |
now = datetime.datetime.now()
|
183 |
blocks_to_go = next_update_block - current_block
|
184 |
-
next_update_time = now + datetime.timedelta(
|
|
|
|
|
185 |
delta = next_update_time - now
|
186 |
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
|
187 |
|
188 |
-
subtensor, metagraph = get_subtensor_and_metagraph()
|
189 |
-
|
190 |
-
tao_price = get_tao_price()
|
191 |
-
|
192 |
-
leaderboard_df = get_subnet_data(subtensor, metagraph)
|
193 |
-
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
)
|
203 |
-
|
204 |
-
validator_df = get_validator_weights(metagraph)
|
205 |
-
weight_keys = set()
|
206 |
-
for uid, stats in validator_df.items():
|
207 |
-
weight_keys.update(stats[-1].keys())
|
208 |
-
|
209 |
-
def leaderboard_data(show_stale: bool):
|
210 |
-
value = [
|
211 |
[
|
212 |
-
f
|
213 |
format_score(c.uid, scores, "win_rate"),
|
214 |
format_score(c.uid, scores, "avg_loss"),
|
215 |
format_score(c.uid, scores, "weight"),
|
216 |
c.uid,
|
217 |
-
c.block
|
218 |
-
]
|
|
|
|
|
219 |
]
|
220 |
-
return value
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
gr.HTML(FONT)
|
225 |
-
gr.HTML(TITLE)
|
226 |
-
#gr.HTML(IMAGE)
|
227 |
-
gr.HTML(HEADER)
|
228 |
|
229 |
-
gr.HTML(value=get_next_update_div(current_block, next_update))
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
num_top_classes=10,
|
234 |
-
)
|
235 |
-
|
236 |
-
with gr.Accordion("Evaluation Stats"):
|
237 |
-
gr.HTML(EVALUATION_HEADER)
|
238 |
-
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
|
239 |
-
leaderboard_table = gr.components.Dataframe(
|
240 |
-
value=leaderboard_data(show_stale.value),
|
241 |
-
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
|
242 |
-
datatype=["markdown", "number", "number", "number", "number", "number"],
|
243 |
-
elem_id="leaderboard-table",
|
244 |
-
interactive=False,
|
245 |
-
visible=True,
|
246 |
-
)
|
247 |
-
gr.HTML(EVALUATION_DETAILS)
|
248 |
-
show_stale.change(leaderboard_data, [show_stale], leaderboard_table)
|
249 |
-
|
250 |
-
with gr.Accordion("Validator Stats"):
|
251 |
-
validator_table = gr.components.Dataframe(
|
252 |
-
value=[
|
253 |
-
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.incentive]
|
254 |
-
for uid, _ in sorted(
|
255 |
-
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
|
256 |
-
key=lambda x: x[1],
|
257 |
-
reverse=True
|
258 |
-
)
|
259 |
-
],
|
260 |
-
headers=["UID", "Stake (Ο)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]})" for c in leaderboard_df if c.incentive],
|
261 |
-
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
|
262 |
-
interactive=False,
|
263 |
-
visible=True,
|
264 |
-
)
|
265 |
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
272 |
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import bittensor as bt
|
3 |
+
from typing import Dict, List, Any, Optional, Tuple
|
4 |
from bittensor.extrinsics.serving import get_metadata
|
5 |
from dataclasses import dataclass
|
6 |
import requests
|
|
|
9 |
import os
|
10 |
import datetime
|
11 |
import time
|
12 |
+
import json
|
13 |
+
import pandas as pd
|
14 |
from dotenv import load_dotenv
|
15 |
from huggingface_hub import HfApi
|
16 |
from apscheduler.schedulers.background import BackgroundScheduler
|
17 |
|
18 |
load_dotenv()
|
19 |
|
20 |
+
FONT = (
|
21 |
+
"""<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
|
22 |
+
)
|
23 |
+
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 9 Leaderboard</h1>"""
|
24 |
+
# IMAGE = """<a href="https://discord.gg/jqVphNsB4H" target="_blank"><img src="https://i.ibb.co/88wyVQ7/nousgirl.png" alt="nousgirl" style="margin: auto; width: 20%; border: 0;" /></a>"""
|
25 |
+
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/RaoFoundation/pretraining" target="_blank">Subnet 9</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that rewards miners for producing pretrained Foundation-Models on the <a href="https://huggingface.co/datasets/tiiuae/falcon-refinedweb" target="_blank">Falcon Refined Web dataset</a>. It acts like a continuous benchmark whereby miners are rewarded for attaining the best losses on randomly sampled pages of Falcon.<br/>The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
|
26 |
+
EVALUATION_DETAILS = """<ul><li><b>Name:</b> the π€ Hugging Face model name (click to go to the model card)</li><li><b>Rewards / Day:</b> the expected rewards per day based on current ranking.</li><li><b>Last Average Loss:</b> the last loss value on the evaluation data for the model as calculated by a validator (lower is better)</li><li><b>UID:</b> the Bittensor UID of the miner</li><li><b>Block:</b> the Bittensor block that the model was submitted in</li></ul><br/>More stats on <a href="https://taostats.io/subnets/netuid-9/" target="_blank">taostats</a>."""
|
27 |
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by the Opentensor validator</h3>"""
|
28 |
VALIDATOR_WANDB_PROJECT = "opentensor-dev/pretraining-subnet"
|
29 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
|
|
34 |
RETRIES = 5
|
35 |
DELAY_SECS = 3
|
36 |
NETUID = 9
|
|
|
|
|
37 |
SECONDS_PER_BLOCK = 12
|
38 |
|
39 |
+
|
40 |
@dataclass
|
41 |
class ModelData:
|
42 |
uid: int
|
|
|
50 |
emission: float
|
51 |
|
52 |
@classmethod
|
53 |
+
def from_compressed_str(
|
54 |
+
cls,
|
55 |
+
uid: int,
|
56 |
+
hotkey: str,
|
57 |
+
cs: str,
|
58 |
+
block: int,
|
59 |
+
incentive: float,
|
60 |
+
emission: float,
|
61 |
+
):
|
62 |
"""Returns an instance of this class from a compressed string representation"""
|
63 |
tokens = cs.split(":")
|
64 |
return ModelData(
|
|
|
70 |
hash=tokens[3] if tokens[3] != "None" else None,
|
71 |
block=block,
|
72 |
incentive=incentive,
|
73 |
+
emission=emission,
|
74 |
)
|
75 |
|
76 |
+
|
77 |
def run_with_retries(func, *args, **kwargs):
|
78 |
for i in range(0, RETRIES):
|
79 |
try:
|
|
|
84 |
time.sleep(DELAY_SECS)
|
85 |
raise RuntimeError("Should never happen")
|
86 |
|
87 |
+
|
88 |
+
def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
|
89 |
+
def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
|
90 |
+
subtensor = bt.subtensor("finney")
|
91 |
+
metagraph = bt.metagraph(NETUID, lite=False)
|
92 |
return subtensor, metagraph
|
93 |
+
|
94 |
return run_with_retries(_internal)
|
95 |
|
96 |
+
|
97 |
def get_tao_price() -> float:
|
98 |
+
return run_with_retries(
|
99 |
+
lambda: float(
|
100 |
+
requests.get(
|
101 |
+
"https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT"
|
102 |
+
).json()["data"]["last"]
|
103 |
+
)
|
104 |
+
)
|
105 |
+
|
106 |
|
107 |
+
def get_validator_weights(
|
108 |
+
metagraph: bt.metagraph,
|
109 |
+
) -> Dict[int, Tuple[float, int, Dict[int, float]]]:
|
110 |
+
"""Returns a dictionary of validator UIDs to (vtrust, stake, {uid: weight})."""
|
111 |
ret = {}
|
112 |
for uid in metagraph.uids.tolist():
|
113 |
vtrust = metagraph.validator_trust[uid].item()
|
|
|
121 |
ret[uid][-1][ouid] = weight
|
122 |
return ret
|
123 |
|
124 |
+
|
125 |
+
def get_subnet_data(
|
126 |
+
subtensor: bt.subtensor, metagraph: bt.metagraph
|
127 |
+
) -> List[ModelData]:
|
128 |
result = []
|
129 |
for uid in metagraph.uids.tolist():
|
130 |
hotkey = metagraph.hotkeys[uid]
|
|
|
137 |
chain_str = bytes.fromhex(hex_data).decode()
|
138 |
block = metadata["block"]
|
139 |
incentive = metagraph.incentive[uid].nan_to_num().item()
|
140 |
+
emission = (
|
141 |
+
metagraph.emission[uid].nan_to_num().item() * 20
|
142 |
+
) # convert to daily TAO
|
143 |
|
144 |
model_data = None
|
145 |
try:
|
146 |
+
model_data = ModelData.from_compressed_str(
|
147 |
+
uid, hotkey, chain_str, block, incentive, emission
|
148 |
+
)
|
149 |
except:
|
150 |
continue
|
151 |
|
152 |
result.append(model_data)
|
153 |
return result
|
154 |
|
155 |
+
|
156 |
def is_floatable(x) -> bool:
|
157 |
+
return (
|
158 |
+
isinstance(x, float) and not math.isnan(x) and not math.isinf(x)
|
159 |
+
) or isinstance(x, int)
|
160 |
+
|
161 |
+
|
162 |
+
def get_scores(
|
163 |
+
uids: List[int],
|
164 |
+
) -> Dict[int, Dict[str, Optional[float]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
api = wandb.Api(api_key=WANDB_TOKEN)
|
166 |
+
runs = list(
|
167 |
+
api.runs(
|
168 |
+
VALIDATOR_WANDB_PROJECT,
|
169 |
+
filters={"config.type": "validator", "config.uid": 238},
|
170 |
+
)
|
171 |
+
)
|
172 |
|
173 |
result = {}
|
174 |
+
previous_timestamp = None
|
175 |
+
# Iterate through the runs until we've processed all the uids.
|
176 |
+
for i, run in enumerate(runs):
|
177 |
+
if not "original_format_json" in run.summary:
|
178 |
+
continue
|
179 |
+
data = json.loads(run.summary["original_format_json"])
|
180 |
+
all_uid_data = data["uid_data"]
|
181 |
+
timestamp = data["timestamp"]
|
182 |
+
|
183 |
+
# Make sure runs are indeed in descending time order.
|
184 |
+
assert (
|
185 |
+
previous_timestamp is None or timestamp < previous_timestamp
|
186 |
+
), f"Timestamps are not in descending order: {timestamp} >= {previous_timestamp}"
|
187 |
+
previous_timestamp = timestamp
|
188 |
+
|
189 |
for uid in uids:
|
190 |
if uid in result:
|
191 |
continue
|
192 |
+
if str(uid) in all_uid_data:
|
193 |
+
uid_data = all_uid_data[str(uid)]
|
194 |
+
# Only the most recent run is fresh.
|
195 |
+
is_fresh = i == 0
|
196 |
+
result[uid] = {
|
197 |
+
"avg_loss": uid_data.get("average_loss", None),
|
198 |
+
"win_rate": uid_data.get("win_rate", None),
|
199 |
+
"win_total": uid_data.get("win_total", None),
|
200 |
+
"weight": uid_data.get("weight", None),
|
201 |
+
"fresh": is_fresh,
|
202 |
+
}
|
203 |
+
if len(result) == len(uids):
|
204 |
break
|
205 |
return result
|
206 |
|
207 |
+
|
208 |
+
def format_score(uid: int, scores, key) -> Optional[float]:
|
209 |
if uid in scores:
|
210 |
if key in scores[uid]:
|
211 |
point = scores[uid][key]
|
|
|
213 |
return round(scores[uid][key], 4)
|
214 |
return None
|
215 |
|
216 |
+
|
217 |
+
def next_epoch(subtensor: bt.subtensor, block: int) -> int:
|
218 |
+
return subtensor.get_subnet_hyperparameters(
|
219 |
+
NETUID
|
220 |
+
).tempo - subtensor.blocks_since_epoch(NETUID, block)
|
221 |
+
|
222 |
|
223 |
def get_next_update_div(current_block: int, next_update_block: int) -> str:
|
224 |
now = datetime.datetime.now()
|
225 |
blocks_to_go = next_update_block - current_block
|
226 |
+
next_update_time = now + datetime.timedelta(
|
227 |
+
seconds=blocks_to_go * SECONDS_PER_BLOCK
|
228 |
+
)
|
229 |
delta = next_update_time - now
|
230 |
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
+
def leaderboard_data(
|
234 |
+
leaderboard: List[ModelData],
|
235 |
+
scores: Dict[int, Dict[str, Optional[float]]],
|
236 |
+
show_stale: bool,
|
237 |
+
) -> List[List[Any]]:
|
238 |
+
"""Returns the leaderboard data, based on models data and UID scores."""
|
239 |
+
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
[
|
241 |
+
f"[{c.namespace}/{c.name} ({c.commit[0:8]})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})",
|
242 |
format_score(c.uid, scores, "win_rate"),
|
243 |
format_score(c.uid, scores, "avg_loss"),
|
244 |
format_score(c.uid, scores, "weight"),
|
245 |
c.uid,
|
246 |
+
c.block,
|
247 |
+
]
|
248 |
+
for c in leaderboard
|
249 |
+
if (c.uid in scores and scores[c.uid]["fresh"]) or show_stale
|
250 |
]
|
|
|
251 |
|
252 |
+
def restart_space():
|
253 |
+
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
|
|
|
|
|
|
|
|
254 |
|
|
|
255 |
|
256 |
+
def main():
|
257 |
+
subtensor, metagraph = get_subtensor_and_metagraph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
tao_price = get_tao_price()
|
260 |
+
|
261 |
+
model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
|
262 |
+
model_data.sort(key=lambda x: x.incentive, reverse=True)
|
263 |
+
|
264 |
+
scores = get_scores([x.uid for x in model_data])
|
265 |
+
|
266 |
+
current_block = metagraph.block.item()
|
267 |
+
next_epoch_block = next_epoch(subtensor, current_block)
|
268 |
+
|
269 |
+
validator_df = get_validator_weights(metagraph)
|
270 |
+
weight_keys = set()
|
271 |
+
for uid, stats in validator_df.items():
|
272 |
+
weight_keys.update(stats[-1].keys())
|
273 |
|
274 |
+
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
|
275 |
+
with demo:
|
276 |
+
gr.HTML(FONT)
|
277 |
+
gr.HTML(TITLE)
|
278 |
+
# gr.HTML(IMAGE)
|
279 |
+
gr.HTML(HEADER)
|
280 |
|
281 |
+
gr.HTML(value=get_next_update_div(current_block, next_epoch_block))
|
282 |
+
|
283 |
+
gr.Label(
|
284 |
+
value={
|
285 |
+
f"{c.namespace}/{c.name} ({c.commit[0:8]}) Β· ${round(c.emission * tao_price, 2):,} (Ο{round(c.emission, 2):,})": c.incentive
|
286 |
+
for c in model_data
|
287 |
+
if c.incentive
|
288 |
+
},
|
289 |
+
num_top_classes=10,
|
290 |
+
)
|
291 |
+
|
292 |
+
with gr.Accordion("Evaluation Stats"):
|
293 |
+
gr.HTML(EVALUATION_HEADER)
|
294 |
+
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
|
295 |
+
leaderboard_table = gr.components.Dataframe(
|
296 |
+
value=leaderboard_data(model_data, scores, show_stale.value),
|
297 |
+
headers=["Name", "Win Rate", "Average Loss", "Weight", "UID", "Block"],
|
298 |
+
datatype=["markdown", "number", "number", "number", "number", "number"],
|
299 |
+
elem_id="leaderboard-table",
|
300 |
+
interactive=False,
|
301 |
+
visible=True,
|
302 |
+
)
|
303 |
+
gr.HTML(EVALUATION_DETAILS)
|
304 |
+
show_stale.change(lambda stale: leaderboard_data(model_data, scores, stale), inputs=[show_stale], outputs=leaderboard_table)
|
305 |
+
|
306 |
+
with gr.Accordion("Validator Stats"):
|
307 |
+
gr.components.Dataframe(
|
308 |
+
value=[
|
309 |
+
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
|
310 |
+
+ [validator_df[uid][-1].get(c.uid) for c in model_data if c.incentive]
|
311 |
+
for uid, _ in sorted(
|
312 |
+
zip(
|
313 |
+
validator_df.keys(),
|
314 |
+
[validator_df[x][1] for x in validator_df.keys()],
|
315 |
+
),
|
316 |
+
key=lambda x: x[1],
|
317 |
+
reverse=True,
|
318 |
+
)
|
319 |
+
],
|
320 |
+
headers=["UID", "Stake (Ο)", "V-Trust"]
|
321 |
+
+ [
|
322 |
+
f"{c.namespace}/{c.name} ({c.commit[0:8]})"
|
323 |
+
for c in model_data
|
324 |
+
if c.incentive
|
325 |
+
],
|
326 |
+
datatype=["number", "number", "number"]
|
327 |
+
+ ["number" for c in model_data if c.incentive],
|
328 |
+
interactive=False,
|
329 |
+
visible=True,
|
330 |
+
)
|
331 |
+
|
332 |
+
|
333 |
+
scheduler = BackgroundScheduler()
|
334 |
+
scheduler.add_job(
|
335 |
+
restart_space, "interval", seconds=60 * 15
|
336 |
+
) # restart every 15 minutes
|
337 |
+
scheduler.start()
|
338 |
+
|
339 |
+
demo.launch()
|
340 |
+
|
341 |
+
main()
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ requests==2.31.0
|
|
3 |
wandb==0.16.2
|
4 |
python-dotenv==1.0.1
|
5 |
APScheduler==3.10.1
|
6 |
-
huggingface-hub>=0.18.0
|
|
|
|
3 |
wandb==0.16.2
|
4 |
python-dotenv==1.0.1
|
5 |
APScheduler==3.10.1
|
6 |
+
huggingface-hub>=0.18.0
|
7 |
+
pandas==2.2.0
|