ai-image-server / main.py
ruslanmv's picture
Update main.py
4e4ece8 verified
raw
history blame
9.53 kB
run_api = False
SSD_1B = False
import os
# Use GPU
gpu_info = os.popen("nvidia-smi").read()
if "failed" in gpu_info:
print("Not connected to a GPU")
is_gpu = False
else:
print(gpu_info)
is_gpu = True
print(is_gpu)
from IPython.display import clear_output
def check_enviroment():
try:
import torch
print("Enviroment is already installed.")
except ImportError:
print("Enviroment not found. Installing...")
# Install requirements from requirements.txt
os.system("pip install -r requirements.txt")
# Install gradio version 3.48.0
os.system("pip install gradio==3.39.0")
# Install python-dotenv
os.system("pip install python-dotenv")
# Clear the output
clear_output()
print("Enviroment installed successfully.")
# Call the function to check and install Packages if necessary
check_enviroment()
from IPython.display import clear_output
import os
import gradio as gr
import numpy as np
import PIL
import base64
import io
import torch
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# SDXL
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# Get the current directory
current_dir = os.getcwd()
model_path = os.path.join(current_dir)
# Set the cache path
cache_path = os.path.join(current_dir, "cache")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
# Uncomment the following line if you are using PyTorch 1.10 or later
# os.environ["TORCH_USE_CUDA_DSA"] = "1"
if is_gpu:
# Uncomment the following line if you want to enable CUDA launch blocking
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
torch_dtype=torch.float16
variant="fp16"
else:
# Uncomment the following line if you want to use CPU instead of GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype=torch.float32
variant="fp32"
# Get the current directory
current_dir = os.getcwd()
model_path = os.path.join(current_dir)
# Set the cache path
cache_path = os.path.join(current_dir, "cache")
if not SSD_1B:
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=torch_dtype,
variant=variant,
cache_dir=cache_path,
)
# model_id="stabilityai/stable-diffusion-xl-base-1.0"
model_id="stabilityai/sdxl-turbo"
#pipe = DiffusionPipeline.from_pretrained(
# model_id=model_id,
# unet=unet,
# torch_dtype=torch_dtype,
# variant=variant,
# cache_dir=cache_path,
# )
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
if torch.cuda.is_available():
pipe.to("cuda")
else:
# SSD-1B
from diffusers import LCMScheduler, AutoPipelineForText2Image
pipe = AutoPipelineForText2Image.from_pretrained(
"segmind/SSD-1B",
torch_dtype=torch.float16,
variant="fp16",
cache_dir=cache_path,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
if torch.cuda.is_available():
pipe.to("cuda")
# load and fuse
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
pipe.fuse_lora()
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0.0,
num_inference_steps: int = 4,
secret_token: str = "",
) -> PIL.Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error(
f"Invalid secret token. Please fork the original space if you want to use it for yourself."
)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
).images[0]
return image
clear_output()
from IPython.display import display
def generate_image(prompt="A beautiful and sexy girl"):
# Generate the image using the prompt
generated_image = generate(
prompt=prompt,
negative_prompt="",
seed=0,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
secret_token="default_secret", # Replace with your secret token
)
# Display the image in the Jupyter Notebook
display(generated_image)
if not run_api:
secret_token = gr.Text(
label="Secret Token",
max_lines=1,
placeholder="Enter your secret token",
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
iface = gr.Interface(
fn=generate,
inputs=inputs,
outputs=result,
title="Image Generator",
description="Generate images based on prompts.",
)
#iface.launch()
iface.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker
if run_api:
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
</div>
</div>"""
)
secret_token = gr.Text(
label="Secret Token",
max_lines=1,
placeholder="Enter your secret token",
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
result = gr.Image(label="Result", show_label=False)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
prompt.submit(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
# demo.queue(max_size=32).launch()
# Launch the Gradio app with multiple workers and debug mode enabled
# demo.queue(max_size=32).launch(debug=True)# For Standard
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker
'''
import gradio as gr
import subprocess
def run_command(command):
try:
result = subprocess.check_output(command, shell=True, text=True)
return result
except subprocess.CalledProcessError as e:
return f"Error: {e}"
iface = gr.Interface(
fn=run_command,
inputs="text",
outputs="text",
#live=True,
title="Command Output Viewer",
description="Enter a command and view its output.",
examples=[
["ls"],
["pwd"],
["echo 'Hello, Gradio!'"],
["python --version"]]
)
iface.launch(server_name="0.0.0.0", server_port=7860)
'''