Spaces:
Runtime error
Runtime error
run_api = False | |
SSD_1B = False | |
import os | |
# Use GPU | |
gpu_info = os.popen("nvidia-smi").read() | |
if "failed" in gpu_info: | |
print("Not connected to a GPU") | |
is_gpu = False | |
else: | |
print(gpu_info) | |
is_gpu = True | |
print(is_gpu) | |
from IPython.display import clear_output | |
def check_enviroment(): | |
try: | |
import torch | |
print("Enviroment is already installed.") | |
except ImportError: | |
print("Enviroment not found. Installing...") | |
# Install requirements from requirements.txt | |
os.system("pip install -r requirements.txt") | |
# Install gradio version 3.48.0 | |
os.system("pip install gradio==3.39.0") | |
# Install python-dotenv | |
os.system("pip install python-dotenv") | |
# Clear the output | |
clear_output() | |
print("Enviroment installed successfully.") | |
# Call the function to check and install Packages if necessary | |
check_enviroment() | |
from IPython.display import clear_output | |
import os | |
import gradio as gr | |
import numpy as np | |
import PIL | |
import base64 | |
import io | |
import torch | |
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler | |
# SDXL | |
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler | |
# Get the current directory | |
current_dir = os.getcwd() | |
model_path = os.path.join(current_dir) | |
# Set the cache path | |
cache_path = os.path.join(current_dir, "cache") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret") | |
# Uncomment the following line if you are using PyTorch 1.10 or later | |
# os.environ["TORCH_USE_CUDA_DSA"] = "1" | |
if is_gpu: | |
# Uncomment the following line if you want to enable CUDA launch blocking | |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" | |
torch_dtype=torch.float16 | |
variant="fp16" | |
else: | |
# Uncomment the following line if you want to use CPU instead of GPU | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
torch_dtype=torch.float32 | |
variant="fp32" | |
# Get the current directory | |
current_dir = os.getcwd() | |
model_path = os.path.join(current_dir) | |
# Set the cache path | |
cache_path = os.path.join(current_dir, "cache") | |
if not SSD_1B: | |
unet = UNet2DConditionModel.from_pretrained( | |
"latent-consistency/lcm-sdxl", | |
torch_dtype=torch_dtype, | |
variant=variant, | |
cache_dir=cache_path, | |
) | |
# model_id="stabilityai/stable-diffusion-xl-base-1.0" | |
model_id="stabilityai/sdxl-turbo" | |
#pipe = DiffusionPipeline.from_pretrained( | |
# model_id=model_id, | |
# unet=unet, | |
# torch_dtype=torch_dtype, | |
# variant=variant, | |
# cache_dir=cache_path, | |
# ) | |
from diffusers import StableDiffusionPipeline | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
if torch.cuda.is_available(): | |
pipe.to("cuda") | |
else: | |
# SSD-1B | |
from diffusers import LCMScheduler, AutoPipelineForText2Image | |
pipe = AutoPipelineForText2Image.from_pretrained( | |
"segmind/SSD-1B", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
cache_dir=cache_path, | |
) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
if torch.cuda.is_available(): | |
pipe.to("cuda") | |
# load and fuse | |
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b") | |
pipe.fuse_lora() | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 0.0, | |
num_inference_steps: int = 4, | |
secret_token: str = "", | |
) -> PIL.Image.Image: | |
if secret_token != SECRET_TOKEN: | |
raise gr.Error( | |
f"Invalid secret token. Please fork the original space if you want to use it for yourself." | |
) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
return image | |
clear_output() | |
from IPython.display import display | |
def generate_image(prompt="A beautiful and sexy girl"): | |
# Generate the image using the prompt | |
generated_image = generate( | |
prompt=prompt, | |
negative_prompt="", | |
seed=0, | |
width=1024, | |
height=1024, | |
guidance_scale=0.0, | |
num_inference_steps=4, | |
secret_token="default_secret", # Replace with your secret token | |
) | |
# Display the image in the Jupyter Notebook | |
display(generated_image) | |
if not run_api: | |
secret_token = gr.Text( | |
label="Secret Token", | |
max_lines=1, | |
placeholder="Enter your secret token", | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0 | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4 | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
secret_token, | |
] | |
iface = gr.Interface( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
title="Image Generator", | |
description="Generate images based on prompts.", | |
) | |
#iface.launch() | |
iface.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker | |
if run_api: | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;"> | |
<div style="text-align: center; color: black;"> | |
<p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p> | |
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p> | |
</div> | |
</div>""" | |
) | |
secret_token = gr.Text( | |
label="Secret Token", | |
max_lines=1, | |
placeholder="Enter your secret token", | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0 | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", minimum=1, maximum=8, step=1, value=4 | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
secret_token, | |
] | |
prompt.submit( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
# demo.queue(max_size=32).launch() | |
# Launch the Gradio app with multiple workers and debug mode enabled | |
# demo.queue(max_size=32).launch(debug=True)# For Standard | |
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860) # Docker | |
''' | |
import gradio as gr | |
import subprocess | |
def run_command(command): | |
try: | |
result = subprocess.check_output(command, shell=True, text=True) | |
return result | |
except subprocess.CalledProcessError as e: | |
return f"Error: {e}" | |
iface = gr.Interface( | |
fn=run_command, | |
inputs="text", | |
outputs="text", | |
#live=True, | |
title="Command Output Viewer", | |
description="Enter a command and view its output.", | |
examples=[ | |
["ls"], | |
["pwd"], | |
["echo 'Hello, Gradio!'"], | |
["python --version"]] | |
) | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |
''' |