Spaces:
Running
on
Zero
Running
on
Zero
First commit
Browse files- app.py +150 -131
- requirements.txt +0 -1
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# -------------------------------
|
| 2 |
-
# AI Fast Image Server
|
| 3 |
# -------------------------------
|
| 4 |
|
| 5 |
from __future__ import annotations
|
|
@@ -7,11 +7,11 @@ import os
|
|
| 7 |
import sys
|
| 8 |
import logging
|
| 9 |
import subprocess
|
| 10 |
-
from typing import Optional
|
| 11 |
|
| 12 |
-
# ----------
|
| 13 |
-
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
|
| 14 |
-
os.environ.setdefault("DEEPSPEED_DISABLE_NVML", "1")
|
| 15 |
os.environ.setdefault("BITSANDBYTES_NOWELCOME", "1")
|
| 16 |
|
| 17 |
# ---------- Logging ----------
|
|
@@ -23,7 +23,7 @@ logging.basicConfig(
|
|
| 23 |
log = logging.getLogger("ai-fast-image-server")
|
| 24 |
|
| 25 |
# ---------- Config via ENV ----------
|
| 26 |
-
# MODEL_BACKEND:
|
| 27 |
MODEL_BACKEND = os.getenv("MODEL_BACKEND", "sdxl_lcm_lora").lower()
|
| 28 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
| 29 |
DEFAULT_SIZE = int(os.getenv("DEFAULT_SIZE", "1024"))
|
|
@@ -31,9 +31,10 @@ SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
|
|
| 31 |
PORT = int(os.getenv("PORT", "7860"))
|
| 32 |
CONCURRENCY = int(os.getenv("CONCURRENCY", "2"))
|
| 33 |
QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", "32"))
|
| 34 |
-
ENABLE_SSR = os.getenv("ENABLE_SSR", "false").lower() == "true" # SSR
|
|
|
|
| 35 |
|
| 36 |
-
# ----------
|
| 37 |
import warnings
|
| 38 |
warnings.filterwarnings("ignore", message="Can't initialize NVML")
|
| 39 |
|
|
@@ -48,6 +49,18 @@ from diffusers import (
|
|
| 48 |
AutoPipelineForText2Image,
|
| 49 |
)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# ---------- Version guard: Torch 2.1 + NumPy 2.x is incompatible ----------
|
| 52 |
try:
|
| 53 |
_np_major = int(np.__version__.split(".")[0])
|
|
@@ -79,161 +92,163 @@ def print_nvidia_smi() -> None:
|
|
| 79 |
|
| 80 |
print_nvidia_smi()
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
DTYPE = torch.float16 if IS_GPU else torch.float32
|
| 85 |
-
log.info(f"CUDA available: {IS_GPU} | device={DEVICE} | dtype={DTYPE}")
|
| 86 |
-
|
| 87 |
-
# ---------- Torch perf knobs ----------
|
| 88 |
-
try:
|
| 89 |
-
if IS_GPU:
|
| 90 |
-
torch.backends.cuda.matmul.allow_tf32 = True # safe perf on Ampere+
|
| 91 |
-
torch.set_float32_matmul_precision("high")
|
| 92 |
-
except Exception:
|
| 93 |
-
pass
|
| 94 |
-
|
| 95 |
-
# ---------- Helpers ----------
|
| 96 |
-
def _variant_kwargs() -> dict:
|
| 97 |
-
# use fp16 repo variants only on GPU
|
| 98 |
-
return {"variant": "fp16"} if IS_GPU else {}
|
| 99 |
-
|
| 100 |
-
def _cpu_safety_settings(pipe: DiffusionPipeline) -> None:
|
| 101 |
-
# reduce RAM usage and avoid giant VAE allocations on CPU
|
| 102 |
-
try:
|
| 103 |
-
pipe.enable_vae_tiling()
|
| 104 |
-
except Exception:
|
| 105 |
-
pass
|
| 106 |
|
| 107 |
-
def
|
| 108 |
-
|
| 109 |
enabled = False
|
| 110 |
try:
|
| 111 |
-
|
| 112 |
enabled = True
|
| 113 |
except Exception:
|
| 114 |
try:
|
| 115 |
-
|
| 116 |
enabled = True
|
| 117 |
except Exception:
|
| 118 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
if enabled:
|
|
|
|
| 120 |
try:
|
| 121 |
-
|
|
|
|
| 122 |
except Exception:
|
| 123 |
pass
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
-
def
|
| 129 |
"""
|
| 130 |
-
|
| 131 |
-
-
|
| 132 |
-
|
| 133 |
-
- ssd1b_lcm_lora: SSD-1B + LCM-LoRA (light)
|
| 134 |
"""
|
| 135 |
log.info(f"Loading model backend: {MODEL_BACKEND}")
|
| 136 |
-
|
| 137 |
if MODEL_BACKEND == "sdxl_lcm_unet":
|
| 138 |
-
# Heavy:
|
| 139 |
unet = UNet2DConditionModel.from_pretrained(
|
| 140 |
"latent-consistency/lcm-sdxl",
|
| 141 |
-
torch_dtype=
|
| 142 |
cache_dir=CACHE_DIR,
|
| 143 |
-
|
| 144 |
)
|
| 145 |
-
|
| 146 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 147 |
unet=unet,
|
| 148 |
-
torch_dtype=
|
| 149 |
cache_dir=CACHE_DIR,
|
| 150 |
-
**_variant_kwargs(),
|
| 151 |
)
|
| 152 |
elif MODEL_BACKEND == "ssd1b_lcm_lora":
|
| 153 |
-
|
| 154 |
"segmind/SSD-1B",
|
| 155 |
-
torch_dtype=
|
| 156 |
cache_dir=CACHE_DIR,
|
| 157 |
-
**_variant_kwargs(),
|
| 158 |
)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
else:
|
| 162 |
-
# Default
|
| 163 |
-
|
| 164 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 165 |
-
torch_dtype=
|
| 166 |
cache_dir=CACHE_DIR,
|
| 167 |
-
**_variant_kwargs(),
|
| 168 |
)
|
| 169 |
-
|
| 170 |
-
|
| 171 |
|
| 172 |
# Use LCM scheduler
|
| 173 |
-
|
| 174 |
|
| 175 |
-
#
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
-
log.info("Pipeline
|
| 183 |
-
return
|
| 184 |
|
| 185 |
-
# warmup lazily
|
| 186 |
def ensure_pipe() -> DiffusionPipeline:
|
| 187 |
global pipe
|
| 188 |
if pipe is None:
|
| 189 |
-
pipe =
|
| 190 |
return pipe
|
| 191 |
|
| 192 |
-
# ----------
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
#
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
prompt: str,
|
| 204 |
-
negative_prompt: str
|
| 205 |
-
seed: Optional[int]
|
| 206 |
-
width: int
|
| 207 |
-
height: int
|
| 208 |
-
guidance_scale: float
|
| 209 |
-
|
| 210 |
) -> Image.Image:
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
num_inference_steps = int(np.clip(num_inference_steps, 1, 12))
|
| 217 |
-
guidance_scale = float(np.clip(guidance_scale, 0.0, 2.0))
|
| 218 |
|
| 219 |
-
#
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
generator = generator.manual_seed(int(seed))
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
guidance_scale=guidance_scale,
|
| 230 |
-
|
| 231 |
-
generator
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
-
#
|
| 237 |
def generate(
|
| 238 |
prompt: str,
|
| 239 |
negative_prompt: str = "",
|
|
@@ -246,39 +261,45 @@ def generate(
|
|
| 246 |
) -> Image.Image:
|
| 247 |
if secret_token != SECRET_TOKEN:
|
| 248 |
raise gr.Error("Invalid secret token. Set SECRET_TOKEN or pass the correct token.")
|
| 249 |
-
|
|
|
|
| 250 |
prompt=prompt,
|
| 251 |
negative_prompt=negative_prompt,
|
| 252 |
seed=seed,
|
| 253 |
width=width,
|
| 254 |
height=height,
|
| 255 |
guidance_scale=guidance_scale,
|
| 256 |
-
|
| 257 |
)
|
| 258 |
|
| 259 |
-
# ---------- Optional warmup
|
| 260 |
def warmup():
|
| 261 |
try:
|
| 262 |
ensure_pipe()
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
except Exception as e:
|
| 268 |
log.warning(f"Warmup skipped or failed: {e}")
|
| 269 |
|
| 270 |
-
if
|
| 271 |
-
|
| 272 |
-
if IS_GPU:
|
| 273 |
-
warmup()
|
| 274 |
|
| 275 |
# ---------- Gradio UI (v5) ----------
|
| 276 |
def build_ui() -> gr.Blocks:
|
| 277 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 278 |
-
gr.Markdown("## Image Generator (LCM) — SDXL / SSD-1B")
|
| 279 |
|
| 280 |
with gr.Row():
|
| 281 |
-
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Describe the image
|
| 282 |
negative = gr.Textbox(label="Negative Prompt", lines=2, placeholder="(optional)")
|
| 283 |
|
| 284 |
with gr.Row():
|
|
@@ -297,24 +318,22 @@ def build_ui() -> gr.Blocks:
|
|
| 297 |
inputs = [prompt, negative, seed, width, height, guidance, steps, token]
|
| 298 |
run.click(fn=generate, inputs=inputs, outputs=out, concurrency_limit=CONCURRENCY)
|
| 299 |
|
| 300 |
-
# Simple health info
|
| 301 |
gr.Markdown(
|
| 302 |
f"*Backend:* `{MODEL_BACKEND}` | "
|
| 303 |
-
f"*
|
| 304 |
-
f"*
|
| 305 |
)
|
| 306 |
return demo
|
| 307 |
|
| 308 |
# ---------- Launch ----------
|
| 309 |
def main():
|
| 310 |
demo = build_ui()
|
| 311 |
-
# Queue for backpressure and concurrency control
|
| 312 |
demo.queue(max_size=QUEUE_SIZE, concurrency_count=CONCURRENCY)
|
| 313 |
demo.launch(
|
| 314 |
server_name="0.0.0.0",
|
| 315 |
server_port=PORT,
|
| 316 |
show_api=True,
|
| 317 |
-
ssr_mode=ENABLE_SSR, #
|
| 318 |
share=False,
|
| 319 |
show_error=True,
|
| 320 |
)
|
|
|
|
| 1 |
# -------------------------------
|
| 2 |
+
# AI Fast Image Server — ZeroGPU Ready
|
| 3 |
# -------------------------------
|
| 4 |
|
| 5 |
from __future__ import annotations
|
|
|
|
| 7 |
import sys
|
| 8 |
import logging
|
| 9 |
import subprocess
|
| 10 |
+
from typing import Optional, Callable
|
| 11 |
|
| 12 |
+
# ---------- Fast, safe defaults ----------
|
| 13 |
+
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") # faster model downloads
|
| 14 |
+
os.environ.setdefault("DEEPSPEED_DISABLE_NVML", "1") # silence NVML in headless envs
|
| 15 |
os.environ.setdefault("BITSANDBYTES_NOWELCOME", "1")
|
| 16 |
|
| 17 |
# ---------- Logging ----------
|
|
|
|
| 23 |
log = logging.getLogger("ai-fast-image-server")
|
| 24 |
|
| 25 |
# ---------- Config via ENV ----------
|
| 26 |
+
# MODEL_BACKEND: "sdxl_lcm_lora" (default), "sdxl_lcm_unet" (heavy), "ssd1b_lcm_lora" (light)
|
| 27 |
MODEL_BACKEND = os.getenv("MODEL_BACKEND", "sdxl_lcm_lora").lower()
|
| 28 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
| 29 |
DEFAULT_SIZE = int(os.getenv("DEFAULT_SIZE", "1024"))
|
|
|
|
| 31 |
PORT = int(os.getenv("PORT", "7860"))
|
| 32 |
CONCURRENCY = int(os.getenv("CONCURRENCY", "2"))
|
| 33 |
QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", "32"))
|
| 34 |
+
ENABLE_SSR = os.getenv("ENABLE_SSR", "false").lower() == "true" # SSR off by default for stability
|
| 35 |
+
WARMUP = os.getenv("WARMUP", "false").lower() == "true" # default False for ZeroGPU
|
| 36 |
|
| 37 |
+
# ---------- Third-party imports ----------
|
| 38 |
import warnings
|
| 39 |
warnings.filterwarnings("ignore", message="Can't initialize NVML")
|
| 40 |
|
|
|
|
| 49 |
AutoPipelineForText2Image,
|
| 50 |
)
|
| 51 |
|
| 52 |
+
# ---------- ZeroGPU decorator (works even off-Spaces) ----------
|
| 53 |
+
try:
|
| 54 |
+
import spaces # real decorator on Spaces
|
| 55 |
+
except Exception:
|
| 56 |
+
class _DummySpaces:
|
| 57 |
+
def GPU(self, *args, **kwargs):
|
| 58 |
+
# identity decorator if not on Spaces
|
| 59 |
+
def _wrap(f):
|
| 60 |
+
return f
|
| 61 |
+
return _wrap
|
| 62 |
+
spaces = _DummySpaces()
|
| 63 |
+
|
| 64 |
# ---------- Version guard: Torch 2.1 + NumPy 2.x is incompatible ----------
|
| 65 |
try:
|
| 66 |
_np_major = int(np.__version__.split(".")[0])
|
|
|
|
| 92 |
|
| 93 |
print_nvidia_smi()
|
| 94 |
|
| 95 |
+
# ---------- Global pipeline handle (kept on CPU between calls) ----------
|
| 96 |
+
pipe: Optional[DiffusionPipeline] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
def _gpu_mem_efficiency(p: DiffusionPipeline) -> None:
|
| 99 |
+
"""Enable memory-efficient attention and VAE tiling where possible."""
|
| 100 |
enabled = False
|
| 101 |
try:
|
| 102 |
+
p.enable_xformers_memory_efficient_attention()
|
| 103 |
enabled = True
|
| 104 |
except Exception:
|
| 105 |
try:
|
| 106 |
+
p.enable_attention_slicing("max")
|
| 107 |
enabled = True
|
| 108 |
except Exception:
|
| 109 |
pass
|
| 110 |
+
try:
|
| 111 |
+
p.enable_vae_tiling()
|
| 112 |
+
except Exception:
|
| 113 |
+
pass
|
| 114 |
if enabled:
|
| 115 |
+
# faster matmul on Ampere+
|
| 116 |
try:
|
| 117 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 118 |
+
torch.set_float32_matmul_precision("high")
|
| 119 |
except Exception:
|
| 120 |
pass
|
| 121 |
|
| 122 |
+
def _variant_kwargs() -> dict:
|
| 123 |
+
# Use fp16 repo variants only when on GPU (avoid oddities on CPU)
|
| 124 |
+
return {"variant": "fp16"}
|
| 125 |
|
| 126 |
+
def _build_pipeline_cpu() -> DiffusionPipeline:
|
| 127 |
"""
|
| 128 |
+
Build the pipeline on CPU with float32 to keep it stable in ZeroGPU's
|
| 129 |
+
CPU-only startup environment. We'll move it to CUDA inside the GPU-decorated
|
| 130 |
+
function per call and return it to CPU after.
|
|
|
|
| 131 |
"""
|
| 132 |
log.info(f"Loading model backend: {MODEL_BACKEND}")
|
|
|
|
| 133 |
if MODEL_BACKEND == "sdxl_lcm_unet":
|
| 134 |
+
# Heavy: full LCM UNet (~10GB). Use only if you have big VRAM.
|
| 135 |
unet = UNet2DConditionModel.from_pretrained(
|
| 136 |
"latent-consistency/lcm-sdxl",
|
| 137 |
+
torch_dtype=torch.float32,
|
| 138 |
cache_dir=CACHE_DIR,
|
| 139 |
+
# no variant on CPU
|
| 140 |
)
|
| 141 |
+
_p = DiffusionPipeline.from_pretrained(
|
| 142 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 143 |
unet=unet,
|
| 144 |
+
torch_dtype=torch.float32,
|
| 145 |
cache_dir=CACHE_DIR,
|
|
|
|
| 146 |
)
|
| 147 |
elif MODEL_BACKEND == "ssd1b_lcm_lora":
|
| 148 |
+
_p = AutoPipelineForText2Image.from_pretrained(
|
| 149 |
"segmind/SSD-1B",
|
| 150 |
+
torch_dtype=torch.float32,
|
| 151 |
cache_dir=CACHE_DIR,
|
|
|
|
| 152 |
)
|
| 153 |
+
_p.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
|
| 154 |
+
_p.fuse_lora()
|
| 155 |
else:
|
| 156 |
+
# Default: SDXL + LCM-LoRA (smaller download, great speed/quality)
|
| 157 |
+
_p = DiffusionPipeline.from_pretrained(
|
| 158 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 159 |
+
torch_dtype=torch.float32,
|
| 160 |
cache_dir=CACHE_DIR,
|
|
|
|
| 161 |
)
|
| 162 |
+
_p.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
| 163 |
+
_p.fuse_lora()
|
| 164 |
|
| 165 |
# Use LCM scheduler
|
| 166 |
+
_p.scheduler = LCMScheduler.from_config(_p.scheduler.config)
|
| 167 |
|
| 168 |
+
# Stay on CPU by default (ZeroGPU will give us CUDA only during calls)
|
| 169 |
+
_p.to("cpu", torch.float32)
|
| 170 |
+
try:
|
| 171 |
+
_p.enable_vae_tiling() # also fine on CPU
|
| 172 |
+
except Exception:
|
| 173 |
+
pass
|
| 174 |
|
| 175 |
+
log.info("Pipeline built on CPU.")
|
| 176 |
+
return _p
|
| 177 |
|
|
|
|
| 178 |
def ensure_pipe() -> DiffusionPipeline:
|
| 179 |
global pipe
|
| 180 |
if pipe is None:
|
| 181 |
+
pipe = _build_pipeline_cpu()
|
| 182 |
return pipe
|
| 183 |
|
| 184 |
+
# ---------- Duration model for ZeroGPU ----------
|
| 185 |
+
def _estimate_duration(prompt: str, negative_prompt: str, seed: int,
|
| 186 |
+
width: int, height: int, guidance_scale: float, steps: int,
|
| 187 |
+
secret_token: str) -> int:
|
| 188 |
+
"""
|
| 189 |
+
Rough estimate (seconds) to inform ZeroGPU scheduler for better queuing.
|
| 190 |
+
Scale by pixel count and steps. Conservative upper bound.
|
| 191 |
+
"""
|
| 192 |
+
base = 3.0 # pipeline dispatch + overhead
|
| 193 |
+
px_scale = (max(256, width) * max(256, height)) / (1024 * 1024)
|
| 194 |
+
step_cost = 0.85 # ~0.85s/step @1024^2 (H200 slice; tune as needed)
|
| 195 |
+
est = base + steps * step_cost * max(0.5, px_scale)
|
| 196 |
+
# Clamp between 10 and 120 seconds
|
| 197 |
+
return int(min(120, max(10, est)))
|
| 198 |
+
|
| 199 |
+
# ---------- GPU-decorated inference (Spaces detects this) ----------
|
| 200 |
+
@spaces.GPU(duration=_estimate_duration) # dynamic duration; no-op outside Spaces
|
| 201 |
+
def _generate_gpu_call(
|
| 202 |
prompt: str,
|
| 203 |
+
negative_prompt: str,
|
| 204 |
+
seed: Optional[int],
|
| 205 |
+
width: int,
|
| 206 |
+
height: int,
|
| 207 |
+
guidance_scale: float,
|
| 208 |
+
steps: int,
|
| 209 |
) -> Image.Image:
|
| 210 |
+
"""
|
| 211 |
+
Runs under a ZeroGPU-allocated context. We move the pipeline to CUDA at the
|
| 212 |
+
start and back to CPU at the end so that it remains usable when GPU is released.
|
| 213 |
+
"""
|
| 214 |
+
_p = ensure_pipe()
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
# Move to CUDA with half precision (safe with LCM)
|
| 217 |
+
_p.to("cuda", torch.float16)
|
| 218 |
+
_gpu_mem_efficiency(_p)
|
|
|
|
| 219 |
|
| 220 |
+
try:
|
| 221 |
+
# Clamp inputs
|
| 222 |
+
width = int(np.clip(width, 256, MAX_IMAGE_SIZE))
|
| 223 |
+
height = int(np.clip(height, 256, MAX_IMAGE_SIZE))
|
| 224 |
+
steps = int(np.clip(steps, 1, 12))
|
| 225 |
+
guidance_scale = float(np.clip(guidance_scale, 0.0, 2.0))
|
| 226 |
+
|
| 227 |
+
# Deterministic generator on CUDA
|
| 228 |
+
gen = torch.Generator(device="cuda")
|
| 229 |
+
if seed is not None:
|
| 230 |
+
gen = gen.manual_seed(int(seed))
|
| 231 |
+
|
| 232 |
+
out = _p(
|
| 233 |
+
prompt=prompt,
|
| 234 |
+
negative_prompt=negative_prompt,
|
| 235 |
+
width=width,
|
| 236 |
+
height=height,
|
| 237 |
+
guidance_scale=guidance_scale, # LCM prefers low guidance
|
| 238 |
+
num_inference_steps=steps,
|
| 239 |
+
generator=gen,
|
| 240 |
+
output_type="pil",
|
| 241 |
+
)
|
| 242 |
+
return out.images[0]
|
| 243 |
+
finally:
|
| 244 |
+
# Always return pipeline to CPU so next non-GPU context is safe
|
| 245 |
+
try:
|
| 246 |
+
_p.to("cpu", torch.float32)
|
| 247 |
+
_p.enable_vae_tiling()
|
| 248 |
+
except Exception:
|
| 249 |
+
pass
|
| 250 |
|
| 251 |
+
# ---------- Public generate (token gate kept outside GPU context) ----------
|
| 252 |
def generate(
|
| 253 |
prompt: str,
|
| 254 |
negative_prompt: str = "",
|
|
|
|
| 261 |
) -> Image.Image:
|
| 262 |
if secret_token != SECRET_TOKEN:
|
| 263 |
raise gr.Error("Invalid secret token. Set SECRET_TOKEN or pass the correct token.")
|
| 264 |
+
|
| 265 |
+
return _generate_gpu_call(
|
| 266 |
prompt=prompt,
|
| 267 |
negative_prompt=negative_prompt,
|
| 268 |
seed=seed,
|
| 269 |
width=width,
|
| 270 |
height=height,
|
| 271 |
guidance_scale=guidance_scale,
|
| 272 |
+
steps=num_inference_steps,
|
| 273 |
)
|
| 274 |
|
| 275 |
+
# ---------- Optional warmup (CPU only by default for ZeroGPU) ----------
|
| 276 |
def warmup():
|
| 277 |
try:
|
| 278 |
ensure_pipe()
|
| 279 |
+
# Tiny CPU warmup to load weights into RAM/cache
|
| 280 |
+
_ = pipe(
|
| 281 |
+
prompt="minimal warmup",
|
| 282 |
+
width=256,
|
| 283 |
+
height=256,
|
| 284 |
+
guidance_scale=0.0,
|
| 285 |
+
num_inference_steps=1,
|
| 286 |
+
generator=torch.Generator(device="cpu").manual_seed(1),
|
| 287 |
+
output_type="pil",
|
| 288 |
+
).images[0]
|
| 289 |
+
log.info("CPU warmup complete.")
|
| 290 |
except Exception as e:
|
| 291 |
log.warning(f"Warmup skipped or failed: {e}")
|
| 292 |
|
| 293 |
+
if WARMUP:
|
| 294 |
+
warmup()
|
|
|
|
|
|
|
| 295 |
|
| 296 |
# ---------- Gradio UI (v5) ----------
|
| 297 |
def build_ui() -> gr.Blocks:
|
| 298 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 299 |
+
gr.Markdown("## Image Generator (LCM) — SDXL / SSD-1B (ZeroGPU Ready)")
|
| 300 |
|
| 301 |
with gr.Row():
|
| 302 |
+
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Describe the image…")
|
| 303 |
negative = gr.Textbox(label="Negative Prompt", lines=2, placeholder="(optional)")
|
| 304 |
|
| 305 |
with gr.Row():
|
|
|
|
| 318 |
inputs = [prompt, negative, seed, width, height, guidance, steps, token]
|
| 319 |
run.click(fn=generate, inputs=inputs, outputs=out, concurrency_limit=CONCURRENCY)
|
| 320 |
|
|
|
|
| 321 |
gr.Markdown(
|
| 322 |
f"*Backend:* `{MODEL_BACKEND}` | "
|
| 323 |
+
f"*ZeroGPU:* `@spaces.GPU` enabled | "
|
| 324 |
+
f"*Max size:* {MAX_IMAGE_SIZE}px"
|
| 325 |
)
|
| 326 |
return demo
|
| 327 |
|
| 328 |
# ---------- Launch ----------
|
| 329 |
def main():
|
| 330 |
demo = build_ui()
|
|
|
|
| 331 |
demo.queue(max_size=QUEUE_SIZE, concurrency_count=CONCURRENCY)
|
| 332 |
demo.launch(
|
| 333 |
server_name="0.0.0.0",
|
| 334 |
server_port=PORT,
|
| 335 |
show_api=True,
|
| 336 |
+
ssr_mode=ENABLE_SSR, # Off by default; turn on with ENABLE_SSR=true if needed
|
| 337 |
share=False,
|
| 338 |
show_error=True,
|
| 339 |
)
|
requirements.txt
CHANGED
|
@@ -2,7 +2,6 @@ accelerate==0.24.1
|
|
| 2 |
diffusers==0.30.0
|
| 3 |
gradio==5.47.2
|
| 4 |
huggingface_hub==0.33.5
|
| 5 |
-
invisible-watermark==0.2.0
|
| 6 |
Pillow==10.1.0
|
| 7 |
torch==2.1.0
|
| 8 |
transformers==4.41.0
|
|
|
|
| 2 |
diffusers==0.30.0
|
| 3 |
gradio==5.47.2
|
| 4 |
huggingface_hub==0.33.5
|
|
|
|
| 5 |
Pillow==10.1.0
|
| 6 |
torch==2.1.0
|
| 7 |
transformers==4.41.0
|