ruslanmv commited on
Commit
23c2f20
·
1 Parent(s): c2fbaa7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -128,6 +128,7 @@ def _build_pipeline_cpu() -> DiffusionPipeline:
128
  """
129
  log.info(f"Loading model backend: {MODEL_BACKEND}")
130
  if MODEL_BACKEND == "sdxl_lcm_unet":
 
131
  unet = UNet2DConditionModel.from_pretrained(
132
  "latent-consistency/lcm-sdxl",
133
  torch_dtype=torch.float32,
@@ -140,12 +141,17 @@ def _build_pipeline_cpu() -> DiffusionPipeline:
140
  cache_dir=CACHE_DIR,
141
  )
142
  elif MODEL_BACKEND == "ssd1b_lcm_lora":
 
143
  _p = AutoPipelineForText2Image.from_pretrained(
144
  "segmind/SSD-1B",
145
  torch_dtype=torch.float32,
146
  cache_dir=CACHE_DIR,
147
  )
148
- _p.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
 
 
 
 
149
  _p.fuse_lora()
150
  else:
151
  # Default: SDXL + LCM-LoRA (smaller download, great speed/quality)
@@ -154,7 +160,11 @@ def _build_pipeline_cpu() -> DiffusionPipeline:
154
  torch_dtype=torch.float32,
155
  cache_dir=CACHE_DIR,
156
  )
157
- _p.load_lora_weights("latent-consistency/lcm-lora-sdxl")
 
 
 
 
158
  _p.fuse_lora()
159
 
160
  _p.scheduler = LCMScheduler.from_config(_p.scheduler.config)
 
128
  """
129
  log.info(f"Loading model backend: {MODEL_BACKEND}")
130
  if MODEL_BACKEND == "sdxl_lcm_unet":
131
+ # SDXL base with LCM UNet (no LoRA required)
132
  unet = UNet2DConditionModel.from_pretrained(
133
  "latent-consistency/lcm-sdxl",
134
  torch_dtype=torch.float32,
 
141
  cache_dir=CACHE_DIR,
142
  )
143
  elif MODEL_BACKEND == "ssd1b_lcm_lora":
144
+ # SSD-1B with LCM-LoRA (Diffusers backend; no PEFT required)
145
  _p = AutoPipelineForText2Image.from_pretrained(
146
  "segmind/SSD-1B",
147
  torch_dtype=torch.float32,
148
  cache_dir=CACHE_DIR,
149
  )
150
+ _p.load_lora_weights(
151
+ "latent-consistency/lcm-lora-ssd-1b",
152
+ adapter_name="lcm",
153
+ use_peft_backend=False, # <-- avoid PEFT requirement
154
+ )
155
  _p.fuse_lora()
156
  else:
157
  # Default: SDXL + LCM-LoRA (smaller download, great speed/quality)
 
160
  torch_dtype=torch.float32,
161
  cache_dir=CACHE_DIR,
162
  )
163
+ _p.load_lora_weights(
164
+ "latent-consistency/lcm-lora-sdxl",
165
+ adapter_name="lcm",
166
+ use_peft_backend=False, # <-- avoid PEFT requirement
167
+ )
168
  _p.fuse_lora()
169
 
170
  _p.scheduler = LCMScheduler.from_config(_p.scheduler.config)