Spaces:
Runtime error
Runtime error
# Step 2 - Importing Libraries | |
from moviepy.editor import * | |
from PIL import Image | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline | |
import requests | |
import gradio as gr | |
import torch | |
import re | |
import os | |
import sys | |
from huggingface_hub import snapshot_download | |
import base64 | |
import io | |
import cv2 | |
import argparse | |
import os | |
from PIL import Image | |
from min_dalle import MinDalle | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
import textwrap | |
from mutagen.mp3 import MP3 | |
# to speech conversion | |
from gtts import gTTS | |
from IPython.display import Audio | |
from IPython.display import display | |
from pydub import AudioSegment | |
from os import getcwd | |
import glob | |
import nltk | |
from IPython.display import HTML | |
from base64 import b64encode | |
nltk.download('punkt') | |
description = " Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss " | |
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss " | |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") | |
def get_output_video(text): | |
inputs = tokenizer(text, | |
max_length=1024, | |
truncation=True, | |
return_tensors="pt") | |
summary_ids = model.generate(inputs["input_ids"]) | |
summary = tokenizer.batch_decode(summary_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False) | |
plot = list(summary[0].split('.')) | |
def generate_image( | |
is_mega: bool, | |
text: str, | |
seed: int, | |
grid_size: int, | |
top_k: int, | |
image_path: str, | |
models_root: str, | |
fp16: bool,): | |
model = MinDalle( | |
is_mega=is_mega, | |
models_root=models_root, | |
is_reusable=False, | |
is_verbose=True, | |
dtype=torch.float16 if fp16 else torch.float32 | |
) | |
image = model.generate_image( | |
text, | |
seed, | |
grid_size, | |
top_k=top_k, | |
is_verbose=True | |
) | |
return image | |
generated_images = [] | |
for senten in plot[:-1]: | |
#print(senten) | |
image=generate_image( | |
is_mega='store_true', | |
text=senten, | |
seed=1, | |
grid_size=1, | |
top_k=256, | |
image_path='generated', | |
models_root='pretrained', | |
fp16=256,) | |
generated_images.append(image) | |
# Step 4- Creation of the subtitles | |
sentences =plot[:-1] | |
num_sentences=len(sentences) | |
assert len(generated_images) == len(sentences) , print('Something is wrong') | |
#We can generate our list of subtitles | |
from nltk import tokenize | |
c = 0 | |
sub_names = [] | |
for k in range(len(generated_images)): | |
subtitles=tokenize.sent_tokenize(sentences[k]) | |
sub_names.append(subtitles) | |
# Step 5- Adding Subtitles to the Images | |
def draw_multiple_line_text(image, text, font, text_color, text_start_height): | |
draw = ImageDraw.Draw(image) | |
image_width, image_height = image.size | |
y_text = text_start_height | |
lines = textwrap.wrap(text, width=40) | |
for line in lines: | |
line_width, line_height = font.getsize(line) | |
draw.text(((image_width - line_width) / 2, y_text), | |
line, font=font, fill=text_color) | |
y_text += line_height | |
def add_text_to_img(text1,image_input): | |
''' | |
Testing draw_multiple_line_text | |
''' | |
image =image_input | |
fontsize = 13 # starting font size | |
path_font="/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf" | |
font = ImageFont.truetype(path_font, fontsize) | |
text_color = (255,255,0) | |
text_start_height = 200 | |
draw_multiple_line_text(image, text1, font, text_color, text_start_height) | |
return image | |
generated_images_sub = [] | |
for k in range(len(generated_images)): | |
imagenes = generated_images[k].copy() | |
text_to_add=sub_names[k][0] | |
result=add_text_to_img(text_to_add,imagenes) | |
generated_images_sub.append(result) | |
# Step 7 - Creation of audio | |
c = 0 | |
mp3_names = [] | |
mp3_lengths = [] | |
for k in range(len(generated_images)): | |
text_to_add=sub_names[k][0] | |
print(text_to_add) | |
f_name = 'audio_'+str(c)+'.mp3' | |
mp3_names.append(f_name) | |
# The text that you want to convert to audio | |
mytext = text_to_add | |
# Language in which you want to convert | |
language = 'en' | |
# Passing the text and language to the engine, | |
# here we have marked slow=False. Which tells | |
# the module that the converted audio should | |
# have a high speed | |
myobj = gTTS(text=mytext, lang=language, slow=False) | |
# Saving the converted audio in a mp3 file named | |
sound_file=f_name | |
myobj.save(sound_file) | |
audio = MP3(sound_file) | |
duration=audio.info.length | |
mp3_lengths.append(duration) | |
print(audio.info.length) | |
c+=1 | |
# Step 8 - Merge audio files | |
cwd = (getcwd()).replace(chr(92), '/') | |
#export_path = f'{cwd}/result.mp3' | |
export_path ='result.mp3' | |
MP3_FILES = glob.glob(pathname=f'{cwd}/*.mp3', recursive=True) | |
silence = AudioSegment.silent(duration=500) | |
full_audio = AudioSegment.empty() # this will accumulate the entire mp3 audios | |
for n, mp3_file in enumerate(mp3_names): | |
mp3_file = mp3_file.replace(chr(92), '/') | |
print(n, mp3_file) | |
# Load the current mp3 into `audio_segment` | |
audio_segment = AudioSegment.from_mp3(mp3_file) | |
# Just accumulate the new `audio_segment` + `silence` | |
full_audio += audio_segment + silence | |
print('Merging ', n) | |
# The loop will exit once all files in the list have been used | |
# Then export | |
full_audio.export(export_path, format='mp3') | |
print('\ndone!') | |
# Step 9 - Creation of the video with adjusted times of the sound | |
c = 0 | |
file_names = [] | |
for img in generated_images_sub: | |
f_name = 'img_'+str(c)+'.jpg' | |
file_names.append(f_name) | |
img = img.save(f_name) | |
c+=1 | |
print(file_names) | |
clips=[] | |
d=0 | |
for m in file_names: | |
duration=mp3_lengths[d] | |
print(d,duration) | |
clips.append(ImageClip(m).set_duration(duration+0.5)) | |
d+=1 | |
concat_clip = concatenate_videoclips(clips, method="compose") | |
concat_clip.write_videofile("result_new.mp4", fps=24) | |
# Step 10 - Merge Video + Audio | |
movie_name = 'result_new.mp4' | |
export_path='result.mp3' | |
movie_final= 'result_final.mp4' | |
def combine_audio(vidname, audname, outname, fps=60): | |
import moviepy.editor as mpe | |
my_clip = mpe.VideoFileClip(vidname) | |
audio_background = mpe.AudioFileClip(audname) | |
final_clip = my_clip.set_audio(audio_background) | |
final_clip.write_videofile(outname,fps=fps) | |
combine_audio(movie_name, export_path, movie_final) # i create a new file | |
return 'result_final.mp4' | |
text ='Once, there was a girl called Laura who went to the supermarket to buy the ingredients to make a cake. Because today is her birthday and her friends come to her house and help her to prepare the cake.' | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# Video Generator from long stories with Artificial Intelligence") | |
gr.Markdown("A story can be input by user. The story is summarized using DistillBART model. Then, then it is generated the images by using Dalle-mini and created the subtitles and audio gtts. These are generated as a video.") | |
with gr.Row(): | |
# Left column (inputs) | |
with gr.Column(): | |
input_start_text = gr.Textbox(value=text, label="Type your story here, for now a sample story is added already!") | |
with gr.Row(): | |
button_gen_video = gr.Button("Generate Video") | |
# Right column (outputs) | |
with gr.Column(): | |
output_interpolation = gr.Video(label="Generated Video") | |
gr.Markdown("<h3>Future Works </h3>") | |
gr.Markdown("This program text-to-video AI software generating videos from any prompt! AI software to build an art gallery. The future version will use Dalle-2 For more info visit [ruslanmv.com](https://ruslanmv.com/) ") | |
button_gen_video.click(fn=get_output_video, inputs=input_start_text, outputs=output_interpolation) | |
demo.launch(debug=False) |