Spaces:
Running
Running
import time | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
# Initialize the inference client with the new LLM | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Define the system prompt for enhancing user prompts | |
SYSTEM_PROMPT = ( | |
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words " | |
"without changing the essence, only write the enhanced prompt and nothing else." | |
) | |
def format_prompt(message): | |
""" | |
Format the input message using the system prompt and a timestamp to ensure uniqueness. | |
""" | |
timestamp = time.time() | |
formatted = ( | |
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" | |
f"[INST] {message} {timestamp} [/INST]" | |
) | |
return formatted | |
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): | |
""" | |
Generate an enhanced prompt using the new LLM. | |
This function yields intermediate results as they are generated. | |
""" | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = { | |
"temperature": temperature, | |
"max_new_tokens": int(max_new_tokens), | |
"top_p": top_p, | |
"repetition_penalty": float(repetition_penalty), | |
"do_sample": True, | |
} | |
formatted_prompt = format_prompt(message) | |
stream = client.text_generation( | |
formatted_prompt, | |
**generate_kwargs, | |
stream=True, | |
details=True, | |
return_full_text=False, | |
) | |
output = "" | |
for response in stream: | |
token_text = response.token.text | |
output += token_text | |
yield output.strip('</s>') | |
return output.strip('</s>') | |
# Markdown texts for credits and best practices | |
CREDITS_MARKDOWN = """ | |
# Prompt Enhancer | |
Credits: Instructions and design inspired by [ruslanmv.com](https://ruslanmv.com). | |
""" | |
BEST_PRACTICES = """ | |
**Best Practices** | |
- Be specific and clear in your input prompt | |
- Use temperature 0.0 for consistent, focused results | |
- Increase temperature up to 1.0 for more creative variations | |
- Review and iterate on engineered prompts for optimal results | |
""" | |
# Build the Gradio interface with the Ocean theme | |
with gr.Blocks(theme=gr.themes.Ocean(), css=".gradio-container { max-width: 800px; margin: auto; }") as demo: | |
# Credits at the top | |
gr.Markdown(CREDITS_MARKDOWN) | |
gr.Markdown( | |
"Enhance your prompt to under 100 words while preserving its essence. " | |
"Adjust the generation parameters as needed." | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_prompt = gr.Textbox( | |
label="Input Prompt", | |
placeholder="Enter your prompt here...", | |
lines=4, | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max New Tokens", | |
minimum=50, | |
maximum=512, | |
step=1, | |
value=256, | |
) | |
temperature_slider = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=2.0, | |
step=0.1, | |
value=0.9, | |
) | |
top_p_slider = gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.05, | |
value=0.95, | |
) | |
repetition_penalty_slider = gr.Slider( | |
label="Repetition Penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
) | |
generate_button = gr.Button("Enhance Prompt") | |
with gr.Column(scale=1): | |
output_prompt = gr.Textbox( | |
label="Enhanced Prompt", | |
lines=10, | |
interactive=True, | |
) | |
# Best practices message at the bottom | |
gr.Markdown(BEST_PRACTICES) | |
# Wire the button click to the generate function (streaming functionality is handled internally) | |
generate_button.click( | |
fn=generate, | |
inputs=[ | |
input_prompt, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
repetition_penalty_slider, | |
], | |
outputs=output_prompt, | |
) | |
demo.launch() | |