Prompt-Enhancer / app.py
ruslanmv's picture
First commit
bb645d8
import time
from huggingface_hub import InferenceClient
import gradio as gr
# Initialize the inference client with the new LLM
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Define the system prompt for enhancing user prompts
SYSTEM_PROMPT = (
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
"without changing the essence, only write the enhanced prompt and nothing else."
)
def format_prompt(message):
"""
Format the input message using the system prompt and a timestamp to ensure uniqueness.
"""
timestamp = time.time()
formatted = (
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
f"[INST] {message} {timestamp} [/INST]"
)
return formatted
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
"""
Generate an enhanced prompt using the new LLM.
This function yields intermediate results as they are generated.
"""
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": int(max_new_tokens),
"top_p": top_p,
"repetition_penalty": float(repetition_penalty),
"do_sample": True,
}
formatted_prompt = format_prompt(message)
stream = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False,
)
output = ""
for response in stream:
token_text = response.token.text
output += token_text
yield output.strip('</s>')
return output.strip('</s>')
# Markdown texts for credits and best practices
CREDITS_MARKDOWN = """
# Prompt Enhancer
Credits: Instructions and design inspired by [ruslanmv.com](https://ruslanmv.com).
"""
BEST_PRACTICES = """
**Best Practices**
- Be specific and clear in your input prompt
- Use temperature 0.0 for consistent, focused results
- Increase temperature up to 1.0 for more creative variations
- Review and iterate on engineered prompts for optimal results
"""
# Build the Gradio interface with the Ocean theme
with gr.Blocks(theme=gr.themes.Ocean(), css=".gradio-container { max-width: 800px; margin: auto; }") as demo:
# Credits at the top
gr.Markdown(CREDITS_MARKDOWN)
gr.Markdown(
"Enhance your prompt to under 100 words while preserving its essence. "
"Adjust the generation parameters as needed."
)
with gr.Row():
with gr.Column(scale=1):
input_prompt = gr.Textbox(
label="Input Prompt",
placeholder="Enter your prompt here...",
lines=4,
)
max_tokens_slider = gr.Slider(
label="Max New Tokens",
minimum=50,
maximum=512,
step=1,
value=256,
)
temperature_slider = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.9,
)
top_p_slider = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.1,
maximum=1.0,
step=0.05,
value=0.95,
)
repetition_penalty_slider = gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
)
generate_button = gr.Button("Enhance Prompt")
with gr.Column(scale=1):
output_prompt = gr.Textbox(
label="Enhanced Prompt",
lines=10,
interactive=True,
)
# Best practices message at the bottom
gr.Markdown(BEST_PRACTICES)
# Wire the button click to the generate function (streaming functionality is handled internally)
generate_button.click(
fn=generate,
inputs=[
input_prompt,
max_tokens_slider,
temperature_slider,
top_p_slider,
repetition_penalty_slider,
],
outputs=output_prompt,
)
demo.launch()