Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import requests | |
from PIL import Image, UnidentifiedImageError | |
from io import BytesIO | |
import matplotlib.pyplot as plt | |
import urllib3 | |
from transformers import pipeline | |
from transformers import BitsAndBytesConfig | |
import torch | |
import textwrap | |
import pandas as pd | |
import numpy as np | |
from haversine import haversine # Install haversine library: pip install haversine | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
from transformers import BitsAndBytesConfig | |
import torch | |
from huggingface_hub import InferenceClient | |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" | |
IS_SPACE = os.environ.get("SPACE_ID", None) is not None | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" | |
print(f"Using device: {device}") | |
print(f"low memory: {LOW_MEMORY}") | |
# Define BitsAndBytesConfig | |
# Ensure model is on the correct device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
model_id = "llava-hf/llava-1.5-7b-hf" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto") | |
model.to(device) | |
import os | |
import requests | |
url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv' | |
filename = 'geocoded_hotels.csv' | |
# Check if the file already exists | |
if not os.path.isfile(filename): | |
response = requests.get(url) | |
if response.status_code == 200: | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
print(f"File {filename} downloaded successfully!") | |
else: | |
print(f"Error downloading file. Status code: {response.status_code}") | |
else: | |
print(f"File {filename} already exists.") | |
import os | |
import pandas as pd | |
from datasets import load_dataset | |
import pyarrow | |
# 1. Get the Current Directory | |
current_directory = os.getcwd() | |
# 2. Construct the Full Path to the CSV File | |
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv') | |
# 3. Check if the file exists | |
if not os.path.exists(csv_file_path): | |
# If not, download the dataset | |
print("File not found, downloading from Hugging Face...") | |
dataset = load_dataset("ruslanmv/hotel-multimodal") | |
# Convert the 'train' dataset to a DataFrame using .to_pandas() | |
df_hotels = dataset['train'].to_pandas() | |
# 4.Save to CSV | |
df_hotels.to_csv(csv_file_path, index=False) | |
print("Dataset downloaded and saved as CSV.") | |
# 5. Read the CSV file | |
df_hotels = pd.read_csv(csv_file_path) | |
print("DataFrame loaded:") | |
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv') | |
# Read the CSV file | |
geocoded_hotels = pd.read_csv(geocoded_hotels_path) | |
import requests | |
def get_current_location(): | |
try: | |
response = requests.get('https://ipinfo.io/json') | |
data = response.json() | |
location = data.get('loc', '') | |
if location: | |
latitude, longitude = map(float, location.split(',')) | |
return latitude, longitude | |
else: | |
return None, None | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return None, None | |
latitude, longitude = get_current_location() | |
if latitude and longitude: | |
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}") | |
else: | |
print("Could not retrieve the current location.") | |
from geopy.geocoders import Nominatim | |
def get_coordinates(location_name): | |
"""Fetches latitude and longitude coordinates for a given location name. | |
Args: | |
location_name (str): The name of the location (e.g., "Rome, Italy"). | |
Returns: | |
tuple: A tuple containing the latitude and longitude (float values), | |
or None if the location is not found. | |
""" | |
geolocator = Nominatim(user_agent="coordinate_finder") | |
location = geolocator.geocode(location_name) | |
if location: | |
return location.latitude, location.longitude | |
else: | |
return None # Location not found | |
def find_nearby(place=None): | |
if place!=None: | |
coordinates = get_coordinates(place) | |
if coordinates: | |
latitude, longitude = coordinates | |
print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}") | |
else: | |
print(f"Location not found: {place}") | |
else: | |
latitude, longitude = get_current_location() | |
if latitude and longitude: | |
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}") | |
# Load the geocoded_hotels DataFrame | |
current_directory = os.getcwd() | |
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv') | |
geocoded_hotels = pd.read_csv(geocoded_hotels_path) | |
# Define input coordinates for the reference location | |
reference_latitude = latitude | |
reference_longitude = longitude | |
# Haversine Distance Function | |
def calculate_haversine_distance(lat1, lon1, lat2, lon2): | |
"""Calculates the Haversine distance between two points on the Earth's surface.""" | |
return haversine((lat1, lon1), (lat2, lon2)) | |
# Calculate distances to all other points in the DataFrame | |
geocoded_hotels['distance_km'] = geocoded_hotels.apply( | |
lambda row: calculate_haversine_distance( | |
reference_latitude, reference_longitude, row['latitude'], row['longitude'] | |
), | |
axis=1 | |
) | |
# Sort by distance and get the top 5 closest points | |
closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5) | |
# Display the results | |
print("The 5 closest locations are:\n") | |
print(closest_hotels) | |
return closest_hotels | |
# Define the respond function | |
def search_hotel(place=None): | |
import os | |
import pandas as pd | |
import requests | |
from PIL import Image, UnidentifiedImageError | |
from io import BytesIO | |
import urllib3 | |
from transformers import pipeline | |
from transformers import BitsAndBytesConfig | |
import torch | |
# Suppress the InsecureRequestWarning | |
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) | |
# 1. Get the Current Directory | |
current_directory = os.getcwd() | |
# 2. Construct the Full Path to the CSV File | |
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv') | |
# Read the CSV file | |
df_hotels = pd.read_csv(csv_file_path) | |
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv') | |
# Read the CSV file | |
geocoded_hotels = pd.read_csv(geocoded_hotels_path) | |
# Assuming find_nearby function is defined elsewhere | |
df_found = find_nearby(place) | |
# Converting df_found[["hotel_id"]].values to a list | |
hotel_ids = df_found["hotel_id"].values.tolist() | |
# Extracting rows from df_hotels where hotel_id is in the list hotel_ids | |
filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)] | |
# Ordering filtered_df by the order of hotel_ids | |
filtered_df['hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True) | |
filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True) | |
# Define the quantization config and model ID | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
model_id = "llava-hf/llava-1.5-7b-hf" | |
# Initialize the pipeline | |
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config}) | |
# Group by hotel_id and take the first 2 image URLs for each hotel | |
grouped_df = filtered_df.groupby('hotel_id', observed=True).head(2) | |
# Create a new DataFrame for storing image descriptions | |
description_data = [] | |
# Download and generate descriptions for the images | |
for index, row in grouped_df.iterrows(): | |
hotel_id = row['hotel_id'] | |
hotel_name = row['hotel_name'] | |
image_url = row['image_url'] | |
try: | |
response = requests.get(image_url, verify=False) | |
response.raise_for_status() # Check for request errors | |
img = Image.open(BytesIO(response.content)) | |
# Generate description for the image | |
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:" | |
outputs = pipe(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) | |
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip() | |
# Append data to the list | |
description_data.append({ | |
'hotel_name': hotel_name, | |
'hotel_id': hotel_id, | |
'image': img, | |
'description': description | |
}) | |
except (requests.RequestException, UnidentifiedImageError): | |
print(f"Skipping image at URL: {image_url}") | |
# Create a DataFrame from the description data | |
description_df = pd.DataFrame(description_data) | |
return description_df | |
def show_hotels(place=None): | |
description_df = search_hotel(place) | |
# Calculate the number of rows needed | |
num_images = len(description_df) | |
num_rows = (num_images + 1) // 2 # Two images per row | |
fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows)) | |
current_index = 0 | |
for _, row in description_df.iterrows(): | |
img = row['image'] | |
description = row['description'] | |
if img is None: # Skip if the image is missing | |
continue | |
row_idx = (current_index // 2) * 2 | |
col_idx = current_index % 2 | |
# Plot the image | |
axs[row_idx, col_idx].imshow(img) | |
axs[row_idx, col_idx].axis('off') | |
axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16) | |
# Wrap the description text | |
wrapped_description = "\n".join(textwrap.wrap(description, width=50)) | |
# Plot the description | |
axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14) | |
axs[row_idx + 1, col_idx].axis('off') | |
current_index += 1 | |
# Hide any unused subplots | |
total_plots = (current_index + 1) // 2 * 2 | |
for j in range(current_index, total_plots * 2): | |
row_idx = (j // 2) * 2 | |
col_idx = j % 2 | |
if row_idx < num_rows * 2: | |
axs[row_idx, col_idx].axis('off') | |
if row_idx + 1 < num_rows * 2: | |
axs[row_idx + 1, col_idx].axis('off') | |
plt.tight_layout() | |
plt.show() | |
def grouped_description(description_df): | |
# Group by 'hotel_id' and aggregate descriptions | |
grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index() | |
# Merge with original DataFrame to get hotel names | |
result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left') | |
# Drop duplicates and keep only the first occurrence of each hotel_id | |
result_df = result_df.drop_duplicates(subset='hotel_id', keep='first') | |
# Reorder columns | |
result_df = result_df[['hotel_name', 'hotel_id', 'description']] | |
return result_df | |
# prompt: please create a new python function that given the result_df as an input create a single prompt where for given hotel_name you append the hotel_id and description , such we can use later this as context for a future llm query | |
def create_prompt_result(result_df): | |
prompt = "" | |
for _, row in result_df.iterrows(): | |
hotel_name = row['hotel_name'] | |
hotel_id = row['hotel_id'] | |
description = row['description'] | |
prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n" | |
return prompt | |
from transformers import pipeline, BitsAndBytesConfig | |
import torch | |
from langchain import PromptTemplate | |
# Create a LangChain prompt template for the hotel recommendation | |
hotel_recommendation_template = """ | |
<s>[INST] <<SYS>> | |
You are a helpful and informative chatbot assistant. | |
<</SYS>> | |
Based on the following hotel descriptions, recommend the best hotel: | |
{context_result} | |
[/INST] | |
""" | |
# Define the respond function | |
# Use LangChain to create a prompt based on the template | |
def build_prompt(context_result): | |
prompt_template = PromptTemplate(template=hotel_recommendation_template) | |
return prompt_template.format(context_result=context_result) | |
# Quantization configuration for efficient model loading | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
# Initialize the text generation pipeline | |
pipe_text = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2", | |
model_kwargs={"quantization_config": quantization_config}) | |
def generate_text_response(prompt): | |
outputs = pipe_text(prompt, max_new_tokens=500) | |
# Extract only the response after the instruction token | |
response = outputs[0]['generated_text'].split("[/INST]")[-1].strip() | |
return response | |
#place='Genova Italia' | |
#show_hotels(place) |