Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,9 @@ from diffusers.utils import load_image
|
|
31 |
|
32 |
import spaces
|
33 |
|
|
|
|
|
|
|
34 |
# Attempt to import loras from lora.py; otherwise use a default placeholder.
|
35 |
try:
|
36 |
from lora import loras
|
@@ -205,15 +208,16 @@ base_model = "black-forest-labs/FLUX.1-dev"
|
|
205 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
206 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
207 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
208 |
-
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
217 |
MAX_SEED = 2**32-1
|
218 |
|
219 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
@@ -292,23 +296,32 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
292 |
return final_image
|
293 |
|
294 |
@spaces.GPU(duration=100)
|
295 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
|
|
296 |
if selected_index is None:
|
297 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
298 |
selected_lora = loras[selected_index]
|
299 |
lora_path = selected_lora["repo"]
|
300 |
trigger_word = selected_lora["trigger_word"]
|
301 |
-
if
|
302 |
-
|
303 |
-
|
304 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
305 |
-
else:
|
306 |
-
prompt_mash = f"{prompt} {trigger_word}"
|
307 |
-
else:
|
308 |
prompt_mash = f"{trigger_word} {prompt}"
|
|
|
|
|
309 |
else:
|
310 |
prompt_mash = prompt
|
311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
with calculateDuration("Unloading LoRA"):
|
313 |
pipe.unload_lora_weights()
|
314 |
pipe_i2i.unload_lora_weights()
|
@@ -326,9 +339,9 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
326 |
if randomize_seed:
|
327 |
seed = random.randint(0, MAX_SEED)
|
328 |
|
329 |
-
if
|
330 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
331 |
-
yield final_image, seed, gr.update(visible=False)
|
332 |
else:
|
333 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
334 |
final_image = None
|
@@ -337,16 +350,16 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
337 |
step_counter += 1
|
338 |
final_image = image
|
339 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
340 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
341 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
342 |
|
343 |
def get_huggingface_safetensors(link):
|
344 |
split_link = link.split("/")
|
345 |
-
if
|
346 |
model_card = ModelCard.load(link)
|
347 |
base_model = model_card.data.get("base_model")
|
348 |
print(base_model)
|
349 |
-
if(
|
350 |
raise Exception("Flux LoRA Not Found!")
|
351 |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
352 |
trigger_word = model_card.data.get("instance_prompt", "")
|
@@ -355,30 +368,30 @@ def get_huggingface_safetensors(link):
|
|
355 |
try:
|
356 |
list_of_files = fs.ls(link, detail=False)
|
357 |
for file in list_of_files:
|
358 |
-
if
|
359 |
safetensors_name = file.split("/")[-1]
|
360 |
-
if
|
361 |
image_elements = file.split("/")
|
362 |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
363 |
except Exception as e:
|
364 |
print(e)
|
365 |
-
gr.Warning(
|
366 |
-
raise Exception(
|
367 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
368 |
else:
|
369 |
raise Exception("Invalid LoRA link format")
|
370 |
|
371 |
def check_custom_model(link):
|
372 |
-
if
|
373 |
-
if
|
374 |
link_split = link.split("huggingface.co/")
|
375 |
return get_huggingface_safetensors(link_split[1])
|
376 |
-
else:
|
377 |
return get_huggingface_safetensors(link)
|
378 |
|
379 |
def add_custom_lora(custom_lora):
|
380 |
global loras
|
381 |
-
if
|
382 |
try:
|
383 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
384 |
print(f"Loaded custom LoRA: {repo}")
|
@@ -389,13 +402,13 @@ def add_custom_lora(custom_lora):
|
|
389 |
<img src="{image}" />
|
390 |
<div>
|
391 |
<h3>{title}</h3>
|
392 |
-
<small>{"Using: <code><b>"+trigger_word+"</code
|
393 |
</div>
|
394 |
</div>
|
395 |
</div>
|
396 |
'''
|
397 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
398 |
-
if
|
399 |
new_item = {
|
400 |
"image": image,
|
401 |
"title": title,
|
@@ -409,8 +422,8 @@ def add_custom_lora(custom_lora):
|
|
409 |
|
410 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
411 |
except Exception as e:
|
412 |
-
gr.Warning(
|
413 |
-
return gr.update(visible=True, value=
|
414 |
else:
|
415 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
416 |
|
@@ -420,25 +433,25 @@ def remove_custom_lora():
|
|
420 |
run_lora.zerogpu = True
|
421 |
|
422 |
css = '''
|
423 |
-
#gen_btn{height: 100
|
424 |
-
#gen_column{align-self: stretch}
|
425 |
-
#title{text-align: center}
|
426 |
-
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
427 |
-
#title img{width: 100px; margin-right: 0.5em}
|
428 |
-
#gallery .grid-wrap{height: 10vh}
|
429 |
-
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90
|
430 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
431 |
-
.card_internal img{margin-right: 1em}
|
432 |
-
.styler{--form-gap-width: 0px !important}
|
433 |
-
#progress{height:30px}
|
434 |
-
#progress .generating{display:none}
|
435 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
436 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
437 |
'''
|
438 |
|
439 |
-
with gr.Blocks(theme=
|
440 |
title = gr.HTML(
|
441 |
-
"""<h1>
|
442 |
elem_id="title",
|
443 |
)
|
444 |
selected_index = gr.State(None)
|
@@ -464,7 +477,7 @@ with gr.Blocks(theme="YTheme/Minecraft", css=css, delete_cache=(60, 60)) as app:
|
|
464 |
custom_lora_info = gr.HTML(visible=False)
|
465 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
466 |
with gr.Column():
|
467 |
-
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
468 |
result = gr.Image(label="Generated Image")
|
469 |
with gr.Row():
|
470 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -507,9 +520,11 @@ with gr.Blocks(theme="YTheme/Minecraft", css=css, delete_cache=(60, 60)) as app:
|
|
507 |
gr.on(
|
508 |
triggers=[generate_button.click, prompt.submit],
|
509 |
fn=run_lora,
|
510 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
511 |
-
outputs=[result, seed, progress_bar]
|
512 |
)
|
513 |
-
|
|
|
|
|
514 |
app.queue()
|
515 |
app.launch(debug=True)
|
|
|
31 |
|
32 |
import spaces
|
33 |
|
34 |
+
# Import the prompt enhancer generator from enhance.py
|
35 |
+
from enhance import generate as enhance_generate
|
36 |
+
|
37 |
# Attempt to import loras from lora.py; otherwise use a default placeholder.
|
38 |
try:
|
39 |
from lora import loras
|
|
|
208 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
209 |
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
210 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
|
211 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
212 |
+
base_model,
|
213 |
+
vae=good_vae,
|
214 |
+
transformer=pipe.transformer,
|
215 |
+
text_encoder=pipe.text_encoder,
|
216 |
+
tokenizer=pipe.tokenizer,
|
217 |
+
text_encoder_2=pipe.text_encoder_2,
|
218 |
+
tokenizer_2=pipe.tokenizer_2,
|
219 |
+
torch_dtype=dtype,
|
220 |
+
).to(device)
|
221 |
MAX_SEED = 2**32-1
|
222 |
|
223 |
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
|
|
296 |
return final_image
|
297 |
|
298 |
@spaces.GPU(duration=100)
|
299 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)):
|
300 |
+
# Check if a LoRA is selected.
|
301 |
if selected_index is None:
|
302 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
303 |
selected_lora = loras[selected_index]
|
304 |
lora_path = selected_lora["repo"]
|
305 |
trigger_word = selected_lora["trigger_word"]
|
306 |
+
# Prepare prompt by appending/prepending trigger word if available.
|
307 |
+
if trigger_word:
|
308 |
+
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
|
|
|
|
|
|
|
|
|
309 |
prompt_mash = f"{trigger_word} {prompt}"
|
310 |
+
else:
|
311 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
312 |
else:
|
313 |
prompt_mash = prompt
|
314 |
|
315 |
+
# If prompt enhancer is enabled, stream the enhanced prompt.
|
316 |
+
enhanced_text = ""
|
317 |
+
if use_enhancer:
|
318 |
+
for enhanced_chunk in enhance_generate(prompt_mash):
|
319 |
+
enhanced_text = enhanced_chunk
|
320 |
+
# Yield intermediate output (no image yet, but update enhanced prompt textbox)
|
321 |
+
yield None, seed, gr.update(visible=False), enhanced_text
|
322 |
+
prompt_mash = enhanced_text # Use final enhanced prompt for generation
|
323 |
+
# Else, leave prompt_mash as is.
|
324 |
+
|
325 |
with calculateDuration("Unloading LoRA"):
|
326 |
pipe.unload_lora_weights()
|
327 |
pipe_i2i.unload_lora_weights()
|
|
|
339 |
if randomize_seed:
|
340 |
seed = random.randint(0, MAX_SEED)
|
341 |
|
342 |
+
if image_input is not None:
|
343 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
344 |
+
yield final_image, seed, gr.update(visible=False), enhanced_text
|
345 |
else:
|
346 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
347 |
final_image = None
|
|
|
350 |
step_counter += 1
|
351 |
final_image = image
|
352 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
353 |
+
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_text
|
354 |
+
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_text
|
355 |
|
356 |
def get_huggingface_safetensors(link):
|
357 |
split_link = link.split("/")
|
358 |
+
if len(split_link) == 2:
|
359 |
model_card = ModelCard.load(link)
|
360 |
base_model = model_card.data.get("base_model")
|
361 |
print(base_model)
|
362 |
+
if (base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell"):
|
363 |
raise Exception("Flux LoRA Not Found!")
|
364 |
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
365 |
trigger_word = model_card.data.get("instance_prompt", "")
|
|
|
368 |
try:
|
369 |
list_of_files = fs.ls(link, detail=False)
|
370 |
for file in list_of_files:
|
371 |
+
if file.endswith(".safetensors"):
|
372 |
safetensors_name = file.split("/")[-1]
|
373 |
+
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
374 |
image_elements = file.split("/")
|
375 |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
376 |
except Exception as e:
|
377 |
print(e)
|
378 |
+
gr.Warning("You didn't include a link nor a valid Hugging Face repository with a *.safetensors LoRA")
|
379 |
+
raise Exception("Invalid LoRA repository")
|
380 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
381 |
else:
|
382 |
raise Exception("Invalid LoRA link format")
|
383 |
|
384 |
def check_custom_model(link):
|
385 |
+
if link.startswith("https://"):
|
386 |
+
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
387 |
link_split = link.split("huggingface.co/")
|
388 |
return get_huggingface_safetensors(link_split[1])
|
389 |
+
else:
|
390 |
return get_huggingface_safetensors(link)
|
391 |
|
392 |
def add_custom_lora(custom_lora):
|
393 |
global loras
|
394 |
+
if custom_lora:
|
395 |
try:
|
396 |
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
397 |
print(f"Loaded custom LoRA: {repo}")
|
|
|
402 |
<img src="{image}" />
|
403 |
<div>
|
404 |
<h3>{title}</h3>
|
405 |
+
<small>{"Using: <code><b>" + trigger_word + "</b></code> as the trigger word" if trigger_word else "No trigger word found. Include it in your prompt"}<br></small>
|
406 |
</div>
|
407 |
</div>
|
408 |
</div>
|
409 |
'''
|
410 |
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
411 |
+
if not existing_item_index:
|
412 |
new_item = {
|
413 |
"image": image,
|
414 |
"title": title,
|
|
|
422 |
|
423 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
424 |
except Exception as e:
|
425 |
+
gr.Warning("Invalid LoRA: either you entered an invalid link or a non-FLUX LoRA")
|
426 |
+
return gr.update(visible=True, value="Invalid LoRA"), gr.update(visible=False), gr.update(), "", None, ""
|
427 |
else:
|
428 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
429 |
|
|
|
433 |
run_lora.zerogpu = True
|
434 |
|
435 |
css = '''
|
436 |
+
#gen_btn { height: 100%; }
|
437 |
+
#gen_column { align-self: stretch; }
|
438 |
+
#title { text-align: center; }
|
439 |
+
#title h1 { font-size: 3em; display:inline-flex; align-items:center; }
|
440 |
+
#title img { width: 100px; margin-right: 0.5em; }
|
441 |
+
#gallery .grid-wrap { height: 10vh; }
|
442 |
+
#lora_list { background: var(--block-background-fill); padding: 0 1em .3em; font-size: 90%; }
|
443 |
+
.card_internal { display: flex; height: 100px; margin-top: .5em; }
|
444 |
+
.card_internal img { margin-right: 1em; }
|
445 |
+
.styler { --form-gap-width: 0px !important; }
|
446 |
+
#progress { height:30px; }
|
447 |
+
#progress .generating { display:none; }
|
448 |
+
.progress-container { width: 100%; height: 30px; background-color: #f0f0f0; border-radius: 15px; overflow: hidden; margin-bottom: 20px; }
|
449 |
+
.progress-bar { height: 100%; background-color: #4f46e5; width: calc(var(--current) / var(--total) * 100%); transition: width 0.5s ease-in-out; }
|
450 |
'''
|
451 |
|
452 |
+
with gr.Blocks(theme=gr.themes.Base(), css=css, delete_cache=(60, 60)) as app:
|
453 |
title = gr.HTML(
|
454 |
+
"""<h1>Flux LoRA Generation</h1>""",
|
455 |
elem_id="title",
|
456 |
)
|
457 |
selected_index = gr.State(None)
|
|
|
477 |
custom_lora_info = gr.HTML(visible=False)
|
478 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
479 |
with gr.Column():
|
480 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
481 |
result = gr.Image(label="Generated Image")
|
482 |
with gr.Row():
|
483 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
520 |
gr.on(
|
521 |
triggers=[generate_button.click, prompt.submit],
|
522 |
fn=run_lora,
|
523 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
|
524 |
+
outputs=[result, seed, progress_bar, enhanced_prompt_box]
|
525 |
)
|
526 |
+
with gr.Row():
|
527 |
+
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
528 |
+
|
529 |
app.queue()
|
530 |
app.launch(debug=True)
|