Spaces:
Running
on
Zero
Running
on
Zero
# flux_app/enhance.py | |
import time | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
# Initialize the inference client with the new LLM | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Define the system prompt for enhancing user prompts | |
SYSTEM_PROMPT = ( | |
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words " | |
"without changing the essence, only write the enhanced prompt and nothing else." | |
) | |
def format_prompt(message): | |
""" | |
Format the input message using the system prompt and a timestamp to ensure uniqueness. | |
""" | |
timestamp = time.time() | |
formatted = ( | |
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" | |
f"[INST] {message} {timestamp} [/INST]" | |
) | |
return formatted | |
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): | |
""" | |
Generate an enhanced prompt using the new LLM. | |
This function yields intermediate results as they are generated. | |
""" | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = { | |
"temperature": temperature, | |
"max_new_tokens": int(max_new_tokens), | |
"top_p": top_p, | |
"repetition_penalty": float(repetition_penalty), | |
"do_sample": True, | |
} | |
formatted_prompt = format_prompt(message) | |
stream = client.text_generation( | |
formatted_prompt, | |
**generate_kwargs, | |
stream=True, | |
details=True, | |
return_full_text=False, | |
) | |
output = "" | |
for response in stream: | |
token_text = response.token.text | |
output += token_text | |
yield output.strip('</s>') | |
return output.strip('</s>') | |