Spaces:
Running
Running
# The MIT License (MIT) | |
# | |
# Copyright (c) 2015 braindead | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# | |
# | |
# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I | |
# simply modified the interface to meet my needs. | |
import numpy as np | |
import math | |
from scipy.special import expn | |
from collections import namedtuple | |
NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2") | |
def profile_noise(noise, sampling_rate, window_size=0): | |
""" | |
Creates a profile of the noise in a given waveform. | |
:param noise: a waveform containing noise ONLY, as a numpy array of floats or ints. | |
:param sampling_rate: the sampling rate of the audio | |
:param window_size: the size of the window the logmmse algorithm operates on. A default value | |
will be picked if left as 0. | |
:return: a NoiseProfile object | |
""" | |
noise, dtype = to_float(noise) | |
noise += np.finfo(np.float64).eps | |
if window_size == 0: | |
window_size = int(math.floor(0.02 * sampling_rate)) | |
if window_size % 2 == 1: | |
window_size = window_size + 1 | |
perc = 50 | |
len1 = int(math.floor(window_size * perc / 100)) | |
len2 = int(window_size - len1) | |
win = np.hanning(window_size) | |
win = win * len2 / np.sum(win) | |
n_fft = 2 * window_size | |
noise_mean = np.zeros(n_fft) | |
n_frames = len(noise) // window_size | |
for j in range(0, window_size * n_frames, window_size): | |
noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0)) | |
noise_mu2 = (noise_mean / n_frames) ** 2 | |
return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2) | |
def denoise(wav, noise_profile: NoiseProfile, eta=0.15): | |
""" | |
Cleans the noise from a speech waveform given a noise profile. The waveform must have the | |
same sampling rate as the one used to create the noise profile. | |
:param wav: a speech waveform as a numpy array of floats or ints. | |
:param noise_profile: a NoiseProfile object that was created from a similar (or a segment of | |
the same) waveform. | |
:param eta: voice threshold for noise update. While the voice activation detection value is | |
below this threshold, the noise profile will be continuously updated throughout the audio. | |
Set to 0 to disable updating the noise profile. | |
:return: the clean wav as a numpy array of floats or ints of the same length. | |
""" | |
wav, dtype = to_float(wav) | |
wav += np.finfo(np.float64).eps | |
p = noise_profile | |
nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2)) | |
x_final = np.zeros(nframes * p.len2) | |
aa = 0.98 | |
mu = 0.98 | |
ksi_min = 10 ** (-25 / 10) | |
x_old = np.zeros(p.len1) | |
xk_prev = np.zeros(p.len1) | |
noise_mu2 = p.noise_mu2 | |
for k in range(0, nframes * p.len2, p.len2): | |
insign = p.win * wav[k:k + p.window_size] | |
spec = np.fft.fft(insign, p.n_fft, axis=0) | |
sig = np.absolute(spec) | |
sig2 = sig ** 2 | |
gammak = np.minimum(sig2 / noise_mu2, 40) | |
if xk_prev.all() == 0: | |
ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0) | |
else: | |
ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0) | |
ksi = np.maximum(ksi_min, ksi) | |
log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi) | |
vad_decision = np.sum(log_sigma_k) / p.window_size | |
if vad_decision < eta: | |
noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2 | |
a = ksi / (1 + ksi) | |
vk = a * gammak | |
ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8)) | |
hw = a * np.exp(ei_vk) | |
sig = sig * hw | |
xk_prev = sig ** 2 | |
xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0) | |
xi_w = np.real(xi_w) | |
x_final[k:k + p.len2] = x_old + xi_w[0:p.len1] | |
x_old = xi_w[p.len1:p.window_size] | |
output = from_float(x_final, dtype) | |
output = np.pad(output, (0, len(wav) - len(output)), mode="constant") | |
return output | |
## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that | |
## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of | |
## webrctvad | |
# def vad(wav, sampling_rate, eta=0.15, window_size=0): | |
# """ | |
# TODO: fix doc | |
# Creates a profile of the noise in a given waveform. | |
# | |
# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints. | |
# :param sampling_rate: the sampling rate of the audio | |
# :param window_size: the size of the window the logmmse algorithm operates on. A default value | |
# will be picked if left as 0. | |
# :param eta: voice threshold for noise update. While the voice activation detection value is | |
# below this threshold, the noise profile will be continuously updated throughout the audio. | |
# Set to 0 to disable updating the noise profile. | |
# """ | |
# wav, dtype = to_float(wav) | |
# wav += np.finfo(np.float64).eps | |
# | |
# if window_size == 0: | |
# window_size = int(math.floor(0.02 * sampling_rate)) | |
# | |
# if window_size % 2 == 1: | |
# window_size = window_size + 1 | |
# | |
# perc = 50 | |
# len1 = int(math.floor(window_size * perc / 100)) | |
# len2 = int(window_size - len1) | |
# | |
# win = np.hanning(window_size) | |
# win = win * len2 / np.sum(win) | |
# n_fft = 2 * window_size | |
# | |
# wav_mean = np.zeros(n_fft) | |
# n_frames = len(wav) // window_size | |
# for j in range(0, window_size * n_frames, window_size): | |
# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0)) | |
# noise_mu2 = (wav_mean / n_frames) ** 2 | |
# | |
# wav, dtype = to_float(wav) | |
# wav += np.finfo(np.float64).eps | |
# | |
# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2)) | |
# vad = np.zeros(nframes * len2, dtype=np.bool) | |
# | |
# aa = 0.98 | |
# mu = 0.98 | |
# ksi_min = 10 ** (-25 / 10) | |
# | |
# xk_prev = np.zeros(len1) | |
# noise_mu2 = noise_mu2 | |
# for k in range(0, nframes * len2, len2): | |
# insign = win * wav[k:k + window_size] | |
# | |
# spec = np.fft.fft(insign, n_fft, axis=0) | |
# sig = np.absolute(spec) | |
# sig2 = sig ** 2 | |
# | |
# gammak = np.minimum(sig2 / noise_mu2, 40) | |
# | |
# if xk_prev.all() == 0: | |
# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0) | |
# else: | |
# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0) | |
# ksi = np.maximum(ksi_min, ksi) | |
# | |
# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi) | |
# vad_decision = np.sum(log_sigma_k) / window_size | |
# if vad_decision < eta: | |
# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2 | |
# print(vad_decision) | |
# | |
# a = ksi / (1 + ksi) | |
# vk = a * gammak | |
# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8)) | |
# hw = a * np.exp(ei_vk) | |
# sig = sig * hw | |
# xk_prev = sig ** 2 | |
# | |
# vad[k:k + len2] = vad_decision >= eta | |
# | |
# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant") | |
# return vad | |
def to_float(_input): | |
if _input.dtype == np.float64: | |
return _input, _input.dtype | |
elif _input.dtype == np.float32: | |
return _input.astype(np.float64), _input.dtype | |
elif _input.dtype == np.uint8: | |
return (_input - 128) / 128., _input.dtype | |
elif _input.dtype == np.int16: | |
return _input / 32768., _input.dtype | |
elif _input.dtype == np.int32: | |
return _input / 2147483648., _input.dtype | |
raise ValueError('Unsupported wave file format') | |
def from_float(_input, dtype): | |
if dtype == np.float64: | |
return _input, np.float64 | |
elif dtype == np.float32: | |
return _input.astype(np.float32) | |
elif dtype == np.uint8: | |
return ((_input * 128) + 128).astype(np.uint8) | |
elif dtype == np.int16: | |
return (_input * 32768).astype(np.int16) | |
elif dtype == np.int32: | |
print(_input) | |
return (_input * 2147483648).astype(np.int32) | |
raise ValueError('Unsupported wave file format') | |