Spaces:
Running
Running
from datetime import datetime | |
from functools import partial | |
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
from torch import optim | |
from torch.utils.data import DataLoader | |
from synthesizer import audio | |
from synthesizer.models.tacotron import Tacotron | |
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer | |
from synthesizer.utils import ValueWindow, data_parallel_workaround | |
from synthesizer.utils.plot import plot_spectrogram | |
from synthesizer.utils.symbols import symbols | |
from synthesizer.utils.text import sequence_to_text | |
from vocoder.display import * | |
def np_now(x: torch.Tensor): return x.detach().cpu().numpy() | |
def time_string(): | |
return datetime.now().strftime("%Y-%m-%d %H:%M") | |
def train(run_id: str, syn_dir: Path, models_dir: Path, save_every: int, backup_every: int, force_restart: bool, | |
hparams): | |
models_dir.mkdir(exist_ok=True) | |
model_dir = models_dir.joinpath(run_id) | |
plot_dir = model_dir.joinpath("plots") | |
wav_dir = model_dir.joinpath("wavs") | |
mel_output_dir = model_dir.joinpath("mel-spectrograms") | |
meta_folder = model_dir.joinpath("metas") | |
model_dir.mkdir(exist_ok=True) | |
plot_dir.mkdir(exist_ok=True) | |
wav_dir.mkdir(exist_ok=True) | |
mel_output_dir.mkdir(exist_ok=True) | |
meta_folder.mkdir(exist_ok=True) | |
weights_fpath = model_dir / f"synthesizer.pt" | |
metadata_fpath = syn_dir.joinpath("train.txt") | |
print("Checkpoint path: {}".format(weights_fpath)) | |
print("Loading training data from: {}".format(metadata_fpath)) | |
print("Using model: Tacotron") | |
# Bookkeeping | |
time_window = ValueWindow(100) | |
loss_window = ValueWindow(100) | |
# From WaveRNN/train_tacotron.py | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
for session in hparams.tts_schedule: | |
_, _, _, batch_size = session | |
if batch_size % torch.cuda.device_count() != 0: | |
raise ValueError("`batch_size` must be evenly divisible by n_gpus!") | |
else: | |
device = torch.device("cpu") | |
print("Using device:", device) | |
# Instantiate Tacotron Model | |
print("\nInitialising Tacotron Model...\n") | |
model = Tacotron(embed_dims=hparams.tts_embed_dims, | |
num_chars=len(symbols), | |
encoder_dims=hparams.tts_encoder_dims, | |
decoder_dims=hparams.tts_decoder_dims, | |
n_mels=hparams.num_mels, | |
fft_bins=hparams.num_mels, | |
postnet_dims=hparams.tts_postnet_dims, | |
encoder_K=hparams.tts_encoder_K, | |
lstm_dims=hparams.tts_lstm_dims, | |
postnet_K=hparams.tts_postnet_K, | |
num_highways=hparams.tts_num_highways, | |
dropout=hparams.tts_dropout, | |
stop_threshold=hparams.tts_stop_threshold, | |
speaker_embedding_size=hparams.speaker_embedding_size).to(device) | |
# Initialize the optimizer | |
optimizer = optim.Adam(model.parameters()) | |
# Load the weights | |
if force_restart or not weights_fpath.exists(): | |
print("\nStarting the training of Tacotron from scratch\n") | |
model.save(weights_fpath) | |
# Embeddings metadata | |
char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv") | |
with open(char_embedding_fpath, "w", encoding="utf-8") as f: | |
for symbol in symbols: | |
if symbol == " ": | |
symbol = "\\s" # For visual purposes, swap space with \s | |
f.write("{}\n".format(symbol)) | |
else: | |
print("\nLoading weights at %s" % weights_fpath) | |
model.load(weights_fpath, optimizer) | |
print("Tacotron weights loaded from step %d" % model.step) | |
# Initialize the dataset | |
metadata_fpath = syn_dir.joinpath("train.txt") | |
mel_dir = syn_dir.joinpath("mels") | |
embed_dir = syn_dir.joinpath("embeds") | |
dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams) | |
for i, session in enumerate(hparams.tts_schedule): | |
current_step = model.get_step() | |
r, lr, max_step, batch_size = session | |
training_steps = max_step - current_step | |
# Do we need to change to the next session? | |
if current_step >= max_step: | |
# Are there no further sessions than the current one? | |
if i == len(hparams.tts_schedule) - 1: | |
# We have completed training. Save the model and exit | |
model.save(weights_fpath, optimizer) | |
break | |
else: | |
# There is a following session, go to it | |
continue | |
model.r = r | |
# Begin the training | |
simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"), | |
("Batch Size", batch_size), | |
("Learning Rate", lr), | |
("Outputs/Step (r)", model.r)]) | |
for p in optimizer.param_groups: | |
p["lr"] = lr | |
collate_fn = partial(collate_synthesizer, r=r, hparams=hparams) | |
data_loader = DataLoader(dataset, batch_size, shuffle=True, num_workers=2, collate_fn=collate_fn) | |
total_iters = len(dataset) | |
steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32) | |
epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32) | |
for epoch in range(1, epochs+1): | |
for i, (texts, mels, embeds, idx) in enumerate(data_loader, 1): | |
start_time = time.time() | |
# Generate stop tokens for training | |
stop = torch.ones(mels.shape[0], mels.shape[2]) | |
for j, k in enumerate(idx): | |
stop[j, :int(dataset.metadata[k][4])-1] = 0 | |
texts = texts.to(device) | |
mels = mels.to(device) | |
embeds = embeds.to(device) | |
stop = stop.to(device) | |
# Forward pass | |
# Parallelize model onto GPUS using workaround due to python bug | |
if device.type == "cuda" and torch.cuda.device_count() > 1: | |
m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts, mels, embeds) | |
else: | |
m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds) | |
# Backward pass | |
m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels) | |
m2_loss = F.mse_loss(m2_hat, mels) | |
stop_loss = F.binary_cross_entropy(stop_pred, stop) | |
loss = m1_loss + m2_loss + stop_loss | |
optimizer.zero_grad() | |
loss.backward() | |
if hparams.tts_clip_grad_norm is not None: | |
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm) | |
if np.isnan(grad_norm.cpu()): | |
print("grad_norm was NaN!") | |
optimizer.step() | |
time_window.append(time.time() - start_time) | |
loss_window.append(loss.item()) | |
step = model.get_step() | |
k = step // 1000 | |
msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | " \ | |
f"{1./time_window.average:#.2} steps/s | Step: {k}k | " | |
stream(msg) | |
# Backup or save model as appropriate | |
if backup_every != 0 and step % backup_every == 0 : | |
backup_fpath = weights_fpath.parent / f"synthesizer_{k:06d}.pt" | |
model.save(backup_fpath, optimizer) | |
if save_every != 0 and step % save_every == 0 : | |
# Must save latest optimizer state to ensure that resuming training | |
# doesn't produce artifacts | |
model.save(weights_fpath, optimizer) | |
# Evaluate model to generate samples | |
epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done | |
step_eval = hparams.tts_eval_interval > 0 and step % hparams.tts_eval_interval == 0 # Every N steps | |
if epoch_eval or step_eval: | |
for sample_idx in range(hparams.tts_eval_num_samples): | |
# At most, generate samples equal to number in the batch | |
if sample_idx + 1 <= len(texts): | |
# Remove padding from mels using frame length in metadata | |
mel_length = int(dataset.metadata[idx[sample_idx]][4]) | |
mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length] | |
target_spectrogram = np_now(mels[sample_idx]).T[:mel_length] | |
attention_len = mel_length // model.r | |
eval_model(attention=np_now(attention[sample_idx][:, :attention_len]), | |
mel_prediction=mel_prediction, | |
target_spectrogram=target_spectrogram, | |
input_seq=np_now(texts[sample_idx]), | |
step=step, | |
plot_dir=plot_dir, | |
mel_output_dir=mel_output_dir, | |
wav_dir=wav_dir, | |
sample_num=sample_idx + 1, | |
loss=loss, | |
hparams=hparams) | |
# Break out of loop to update training schedule | |
if step >= max_step: | |
break | |
# Add line break after every epoch | |
print("") | |
def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step, | |
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams): | |
# Save some results for evaluation | |
attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num))) | |
save_attention(attention, attention_path) | |
# save predicted mel spectrogram to disk (debug) | |
mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num)) | |
np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False) | |
# save griffin lim inverted wav for debug (mel -> wav) | |
wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams) | |
wav_fpath = wav_dir.joinpath("step-{}-wave-from-mel_sample_{}.wav".format(step, sample_num)) | |
audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate) | |
# save real and predicted mel-spectrogram plot to disk (control purposes) | |
spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num)) | |
title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss) | |
plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str, | |
target_spectrogram=target_spectrogram, | |
max_len=target_spectrogram.size // hparams.num_mels) | |
print("Input at step {}: {}".format(step, sequence_to_text(input_seq))) | |