Spaces:
Running
Running
from torch.utils.data import Dataset | |
from pathlib import Path | |
from vocoder import audio | |
import vocoder.hparams as hp | |
import numpy as np | |
import torch | |
class VocoderDataset(Dataset): | |
def __init__(self, metadata_fpath: Path, mel_dir: Path, wav_dir: Path): | |
print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, wav_dir)) | |
with metadata_fpath.open("r") as metadata_file: | |
metadata = [line.split("|") for line in metadata_file] | |
gta_fnames = [x[1] for x in metadata if int(x[4])] | |
gta_fpaths = [mel_dir.joinpath(fname) for fname in gta_fnames] | |
wav_fnames = [x[0] for x in metadata if int(x[4])] | |
wav_fpaths = [wav_dir.joinpath(fname) for fname in wav_fnames] | |
self.samples_fpaths = list(zip(gta_fpaths, wav_fpaths)) | |
print("Found %d samples" % len(self.samples_fpaths)) | |
def __getitem__(self, index): | |
mel_path, wav_path = self.samples_fpaths[index] | |
# Load the mel spectrogram and adjust its range to [-1, 1] | |
mel = np.load(mel_path).T.astype(np.float32) / hp.mel_max_abs_value | |
# Load the wav | |
wav = np.load(wav_path) | |
if hp.apply_preemphasis: | |
wav = audio.pre_emphasis(wav) | |
wav = np.clip(wav, -1, 1) | |
# Fix for missing padding # TODO: settle on whether this is any useful | |
r_pad = (len(wav) // hp.hop_length + 1) * hp.hop_length - len(wav) | |
wav = np.pad(wav, (0, r_pad), mode='constant') | |
assert len(wav) >= mel.shape[1] * hp.hop_length | |
wav = wav[:mel.shape[1] * hp.hop_length] | |
assert len(wav) % hp.hop_length == 0 | |
# Quantize the wav | |
if hp.voc_mode == 'RAW': | |
if hp.mu_law: | |
quant = audio.encode_mu_law(wav, mu=2 ** hp.bits) | |
else: | |
quant = audio.float_2_label(wav, bits=hp.bits) | |
elif hp.voc_mode == 'MOL': | |
quant = audio.float_2_label(wav, bits=16) | |
return mel.astype(np.float32), quant.astype(np.int64) | |
def __len__(self): | |
return len(self.samples_fpaths) | |
def collate_vocoder(batch): | |
mel_win = hp.voc_seq_len // hp.hop_length + 2 * hp.voc_pad | |
max_offsets = [x[0].shape[-1] -2 - (mel_win + 2 * hp.voc_pad) for x in batch] | |
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets] | |
sig_offsets = [(offset + hp.voc_pad) * hp.hop_length for offset in mel_offsets] | |
mels = [x[0][:, mel_offsets[i]:mel_offsets[i] + mel_win] for i, x in enumerate(batch)] | |
labels = [x[1][sig_offsets[i]:sig_offsets[i] + hp.voc_seq_len + 1] for i, x in enumerate(batch)] | |
mels = np.stack(mels).astype(np.float32) | |
labels = np.stack(labels).astype(np.int64) | |
mels = torch.tensor(mels) | |
labels = torch.tensor(labels).long() | |
x = labels[:, :hp.voc_seq_len] | |
y = labels[:, 1:] | |
bits = 16 if hp.voc_mode == 'MOL' else hp.bits | |
x = audio.label_2_float(x.float(), bits) | |
if hp.voc_mode == 'MOL' : | |
y = audio.label_2_float(y.float(), bits) | |
return x, y, mels |