Spaces:
Running
Running
import platform | |
from functools import partial | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from synthesizer.hparams import hparams_debug_string | |
from synthesizer.models.tacotron import Tacotron | |
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer | |
from synthesizer.utils import data_parallel_workaround | |
from synthesizer.utils.symbols import symbols | |
def run_synthesis(in_dir: Path, out_dir: Path, syn_model_fpath: Path, hparams): | |
# This generates ground truth-aligned mels for vocoder training | |
synth_dir = out_dir / "mels_gta" | |
synth_dir.mkdir(exist_ok=True, parents=True) | |
print(hparams_debug_string()) | |
# Check for GPU | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
if hparams.synthesis_batch_size % torch.cuda.device_count() != 0: | |
raise ValueError("`hparams.synthesis_batch_size` must be evenly divisible by n_gpus!") | |
else: | |
device = torch.device("cpu") | |
print("Synthesizer using device:", device) | |
# Instantiate Tacotron model | |
model = Tacotron(embed_dims=hparams.tts_embed_dims, | |
num_chars=len(symbols), | |
encoder_dims=hparams.tts_encoder_dims, | |
decoder_dims=hparams.tts_decoder_dims, | |
n_mels=hparams.num_mels, | |
fft_bins=hparams.num_mels, | |
postnet_dims=hparams.tts_postnet_dims, | |
encoder_K=hparams.tts_encoder_K, | |
lstm_dims=hparams.tts_lstm_dims, | |
postnet_K=hparams.tts_postnet_K, | |
num_highways=hparams.tts_num_highways, | |
dropout=0., # Use zero dropout for gta mels | |
stop_threshold=hparams.tts_stop_threshold, | |
speaker_embedding_size=hparams.speaker_embedding_size).to(device) | |
# Load the weights | |
print("\nLoading weights at %s" % syn_model_fpath) | |
model.load(syn_model_fpath) | |
print("Tacotron weights loaded from step %d" % model.step) | |
# Synthesize using same reduction factor as the model is currently trained | |
r = np.int32(model.r) | |
# Set model to eval mode (disable gradient and zoneout) | |
model.eval() | |
# Initialize the dataset | |
metadata_fpath = in_dir.joinpath("train.txt") | |
mel_dir = in_dir.joinpath("mels") | |
embed_dir = in_dir.joinpath("embeds") | |
dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams) | |
collate_fn = partial(collate_synthesizer, r=r, hparams=hparams) | |
data_loader = DataLoader(dataset, hparams.synthesis_batch_size, collate_fn=collate_fn, num_workers=2) | |
# Generate GTA mels | |
meta_out_fpath = out_dir / "synthesized.txt" | |
with meta_out_fpath.open("w") as file: | |
for i, (texts, mels, embeds, idx) in tqdm(enumerate(data_loader), total=len(data_loader)): | |
texts, mels, embeds = texts.to(device), mels.to(device), embeds.to(device) | |
# Parallelize model onto GPUS using workaround due to python bug | |
if device.type == "cuda" and torch.cuda.device_count() > 1: | |
_, mels_out, _ = data_parallel_workaround(model, texts, mels, embeds) | |
else: | |
_, mels_out, _, _ = model(texts, mels, embeds) | |
for j, k in enumerate(idx): | |
# Note: outputs mel-spectrogram files and target ones have same names, just different folders | |
mel_filename = Path(synth_dir).joinpath(dataset.metadata[k][1]) | |
mel_out = mels_out[j].detach().cpu().numpy().T | |
# Use the length of the ground truth mel to remove padding from the generated mels | |
mel_out = mel_out[:int(dataset.metadata[k][4])] | |
# Write the spectrogram to disk | |
np.save(mel_filename, mel_out, allow_pickle=False) | |
# Write metadata into the synthesized file | |
file.write("|".join(dataset.metadata[k])) | |