Spaces:
Running
Running
| import gradio as gr | |
| from backend.lcm_text_to_image import LCMTextToImage | |
| from backend.models.lcmdiffusion_setting import LCMLora, LCMDiffusionSetting | |
| from constants import DEVICE, LCM_DEFAULT_MODEL_OPENVINO | |
| from time import perf_counter | |
| import numpy as np | |
| from cv2 import imencode | |
| import base64 | |
| from backend.device import get_device_name | |
| from constants import APP_VERSION | |
| from backend.device import is_openvino_device | |
| lcm_text_to_image = LCMTextToImage() | |
| lcm_lora = LCMLora( | |
| base_model_id="Lykon/dreamshaper-7", | |
| lcm_lora_id="latent-consistency/lcm-lora-sdv1-5", | |
| ) | |
| # https://github.com/gradio-app/gradio/issues/2635#issuecomment-1423531319 | |
| def encode_pil_to_base64_new(pil_image): | |
| image_arr = np.asarray(pil_image)[:, :, ::-1] | |
| _, byte_data = imencode(".png", image_arr) | |
| base64_data = base64.b64encode(byte_data) | |
| base64_string_opencv = base64_data.decode("utf-8") | |
| return "data:image/png;base64," + base64_string_opencv | |
| # monkey patching encode pil | |
| gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new | |
| def predict( | |
| prompt, | |
| steps, | |
| seed, | |
| ): | |
| lcm_text_to_image.init( | |
| model_id=LCM_DEFAULT_MODEL_OPENVINO, | |
| use_lora=True, | |
| lcm_lora=lcm_lora, | |
| use_openvino=True if is_openvino_device() else False, | |
| ) | |
| lcm_diffusion_setting = LCMDiffusionSetting() | |
| lcm_diffusion_setting.prompt = prompt | |
| lcm_diffusion_setting.guidance_scale = 1.0 | |
| lcm_diffusion_setting.inference_steps = steps | |
| lcm_diffusion_setting.seed = seed | |
| lcm_diffusion_setting.use_seed = True | |
| lcm_diffusion_setting.image_width = 256 if is_openvino_device() else 512 | |
| lcm_diffusion_setting.image_height = 256 if is_openvino_device() else 512 | |
| lcm_diffusion_setting.use_openvino = True if is_openvino_device() else False | |
| start = perf_counter() | |
| images = lcm_text_to_image.generate(lcm_diffusion_setting) | |
| latency = perf_counter() - start | |
| print(f"Latency: {latency:.2f} seconds") | |
| return images[0] | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 40rem; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| #generate_button { | |
| color: white; | |
| border-color: #007bff; | |
| background: #007bff; | |
| width: 200px; | |
| height: 50px; | |
| } | |
| footer { | |
| visibility: hidden | |
| } | |
| """ | |
| def _get_footer_message() -> str: | |
| version = f"<center><p> {APP_VERSION} " | |
| footer_msg = version + ( | |
| ' © 2023 <a href="https://github.com/rupeshs">' | |
| " Rupesh Sreeraman</a></p></center>" | |
| ) | |
| return footer_msg | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| use_openvino = "- OpenVINO" if is_openvino_device() else "" | |
| gr.Markdown( | |
| f"""# Realtime FastSD CPU {use_openvino} | |
| **Device : {DEVICE} , {get_device_name()}** | |
| """, | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Describe the image you'd like to see", | |
| scale=5, | |
| container=False, | |
| ) | |
| generate_btn = gr.Button( | |
| "Generate", | |
| scale=1, | |
| elem_id="generate_button", | |
| ) | |
| image = gr.Image(type="filepath") | |
| with gr.Accordion("Advanced options", open=False): | |
| steps = gr.Slider( | |
| label="Steps", | |
| value=4 if is_openvino_device() else 3, | |
| minimum=1, | |
| maximum=6, | |
| step=1, | |
| ) | |
| seed = gr.Slider( | |
| randomize=True, | |
| minimum=0, | |
| maximum=999999999, | |
| label="Seed", | |
| step=1, | |
| ) | |
| gr.HTML(_get_footer_message()) | |
| inputs = [prompt, steps, seed] | |
| prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| generate_btn.click( | |
| fn=predict, inputs=inputs, outputs=image, show_progress=False | |
| ) | |
| steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| def start_realtime_text_to_image(share=False): | |
| demo.queue() | |
| demo.launch(share=share) | |