bite_gradio / src /configs /SMAL_configs.py
Nadine Rueegg
initial commit with code and data
753fd9a
raw
history blame
13.4 kB
import numpy as np
import os
import sys
# SMAL_DATA_DIR = '/is/cluster/work/nrueegg/dog_project/pytorch-dogs-inference/src/smal_pytorch/smpl_models/'
# SMAL_DATA_DIR = os.path.join(os.path.dirname(__file__), '..', 'smal_pytorch', 'smal_data')
SMAL_DATA_DIR = os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'smal_data')
# we replace the old SMAL model by a more dog specific model (see BARC cvpr 2022 paper)
# our model has several differences compared to the original SMAL model, some of them are:
# - the PCA shape space is recalculated (from partially new data and weighted)
# - coefficients for limb length changes are allowed (similar to WLDO, we did borrow some of their code)
# - all dogs have a core of approximately the same length
# - dogs are centered in their root joint (which is close to the tail base)
# -> like this the root rotations is always around this joint AND (0, 0, 0)
# -> before this it would happen that the animal 'slips' from the image middle to the side when rotating it. Now
# 'trans' also defines the center of the rotation
# - we correct the back joint locations such that all those joints are more aligned
# logscale_part_list = ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l']
# logscale_part_list = ['front_legs_l', 'front_legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l', 'back_legs_l', 'back_legs_f']
SMAL_MODEL_CONFIG = {
'barc': {
'smal_model_type': 'barc',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'my_smpl_SMBLD_nbj_v3.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'my_smpl_data_SMBLD_v3.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'my_smpl_data_SMBLD_v3.pkl'),
'logscale_part_list': ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'],
},
'39dogs_diffsize': {
'smal_model_type': '39dogs_diffsize',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_00791_nadine_Jr_4_dog.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_00791_nadine_Jr_4_dog.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_00791_nadine_Jr_4_dog.pkl'),
'logscale_part_list': ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'],
},
'39dogs_norm': {
'smal_model_type': '39dogs_norm',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_39dogsnorm_Jr_4_dog.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_Jr_4_dog.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_Jr_4_dog.pkl'),
'logscale_part_list': ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'],
},
'39dogs_norm_9ll': { # 9 limb length parameters
'smal_model_type': '39dogs_norm_9ll',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_39dogsnorm_Jr_4_dog.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_Jr_4_dog.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_Jr_4_dog.pkl'),
'logscale_part_list': ['front_legs_l', 'front_legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l', 'back_legs_l', 'back_legs_f'],
},
'39dogs_norm_newv2': { # front and back legs of equal lengths
'smal_model_type': '39dogs_norm_newv2',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_39dogsnorm_newv2_dog.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_newv2_dog.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_newv2_dog.pkl'),
'logscale_part_list': ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'],
},
'39dogs_norm_newv3': { # pca on dame AND different front and back legs lengths
'smal_model_type': '39dogs_norm_newv3',
'smal_model_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_39dogsnorm_newv3_dog.pkl'),
'smal_model_data_path': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_newv3_dog.pkl'),
'unity_smal_shape_prior_dogs': os.path.join(SMAL_DATA_DIR, 'new_dog_models', 'my_smpl_data_39dogsnorm_newv3_dog.pkl'),
'logscale_part_list': ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'],
},
}
SYMMETRY_INDS_FILE = os.path.join(SMAL_DATA_DIR, 'symmetry_inds.json')
mean_dog_bone_lengths_txt = os.path.join(SMAL_DATA_DIR, 'mean_dog_bone_lengths.txt')
# some vertex indices, (from silvia zuffi´s code, create_projected_images_cats.py)
KEY_VIDS = np.array(([1068, 1080, 1029, 1226], # left eye
[2660, 3030, 2675, 3038], # right eye
[910], # mouth low
[360, 1203, 1235, 1230], # front left leg, low
[3188, 3156, 2327, 3183], # front right leg, low
[1976, 1974, 1980, 856], # back left leg, low
[3854, 2820, 3852, 3858], # back right leg, low
[452, 1811], # tail start
[416, 235, 182], # front left leg, top
[2156, 2382, 2203], # front right leg, top
[829], # back left leg, top
[2793], # back right leg, top
[60, 114, 186, 59], # throat, close to base of neck
[2091, 2037, 2036, 2160], # withers (a bit lower than in reality)
[384, 799, 1169, 431], # front left leg, middle
[2351, 2763, 2397, 3127], # front right leg, middle
[221, 104], # back left leg, middle
[2754, 2192], # back right leg, middle
[191, 1158, 3116, 2165], # neck
[28], # Tail tip
[542], # Left Ear
[2507], # Right Ear
[1039, 1845, 1846, 1870, 1879, 1919, 2997, 3761, 3762], # nose tip
[0, 464, 465, 726, 1824, 2429, 2430, 2690]), dtype=object) # half tail
# the following vertices are used for visibility only: if one of the vertices is visible,
# then we assume that the joint is visible! There is some noise, but we don't care, as this is
# for generation of the synthetic dataset only
KEY_VIDS_VISIBILITY_ONLY = np.array(([1068, 1080, 1029, 1226, 645], # left eye
[2660, 3030, 2675, 3038, 2567], # right eye
[910, 11, 5], # mouth low
[360, 1203, 1235, 1230, 298, 408, 303, 293, 384], # front left leg, low
[3188, 3156, 2327, 3183, 2261, 2271, 2573, 2265], # front right leg, low
[1976, 1974, 1980, 856, 559, 851, 556], # back left leg, low
[3854, 2820, 3852, 3858, 2524, 2522, 2815, 2072], # back right leg, low
[452, 1811, 63, 194, 52, 370, 64], # tail start
[416, 235, 182, 440, 8, 80, 73, 112], # front left leg, top
[2156, 2382, 2203, 2050, 2052, 2406, 3], # front right leg, top
[829, 219, 218, 173, 17, 7, 279], # back left leg, top
[2793, 582, 140, 87, 2188, 2147, 2063], # back right leg, top
[60, 114, 186, 59, 878, 130, 189, 45], # throat, close to base of neck
[2091, 2037, 2036, 2160, 190, 2164], # withers (a bit lower than in reality)
[384, 799, 1169, 431, 321, 314, 437, 310, 323], # front left leg, middle
[2351, 2763, 2397, 3127, 2278, 2285, 2282, 2275, 2359], # front right leg, middle
[221, 104, 105, 97, 103], # back left leg, middle
[2754, 2192, 2080, 2251, 2075, 2074], # back right leg, middle
[191, 1158, 3116, 2165, 154, 653, 133, 339], # neck
[28, 474, 475, 731, 24], # Tail tip
[542, 147, 509, 200, 522], # Left Ear
[2507,2174, 2122, 2126, 2474], # Right Ear
[1039, 1845, 1846, 1870, 1879, 1919, 2997, 3761, 3762], # nose tip
[0, 464, 465, 726, 1824, 2429, 2430, 2690]), dtype=object) # half tail
# Keypoint indices for 3d sketchfab evaluation
SMAL_KEYPOINT_NAMES_FOR_3D_EVAL = ['right_front_paw','right_front_elbow','right_back_paw','right_back_hock','right_ear_top','right_ear_bottom','right_eye', \
'left_front_paw','left_front_elbow','left_back_paw','left_back_hock','left_ear_top','left_ear_bottom','left_eye', \
'nose','tail_start','tail_end']
SMAL_KEYPOINT_INDICES_FOR_3D_EVAL = [2577, 2361, 2820, 2085, 2125, 2453, 2668, 613, 394, 855, 786, 149, 486, 1079, 1845, 1820, 28]
SMAL_KEYPOINT_WHICHTOUSE_FOR_3D_EVAL = [1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0] # [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0]
# see: https://github.com/benjiebob/SMALify/blob/master/config.py
# JOINT DEFINITIONS - based on SMAL joints and additional {eyes, ear tips, chin and nose}
TORSO_JOINTS = [2, 5, 8, 11, 12, 23]
CANONICAL_MODEL_JOINTS = [
10, 9, 8, # upper_left [paw, middle, top]
20, 19, 18, # lower_left [paw, middle, top]
14, 13, 12, # upper_right [paw, middle, top]
24, 23, 22, # lower_right [paw, middle, top]
25, 31, # tail [start, end]
33, 34, # ear base [left, right]
35, 36, # nose, chin
38, 37, # ear tip [left, right]
39, 40, # eyes [left, right]
6, 11, # withers, throat (throat is inaccurate and withers also)
28] # tail middle
# old: 15, 15, # withers, throat (TODO: Labelled same as throat for now), throat
CANONICAL_MODEL_JOINTS_REFINED = [
41, 9, 8, # upper_left [paw, middle, top]
43, 19, 18, # lower_left [paw, middle, top]
42, 13, 12, # upper_right [paw, middle, top]
44, 23, 22, # lower_right [paw, middle, top]
25, 31, # tail [start, end]
33, 34, # ear base [left, right]
35, 36, # nose, chin
38, 37, # ear tip [left, right]
39, 40, # eyes [left, right]
46, 45, # withers, throat
28] # tail middle
# the following list gives the indices of the KEY_VIDS_JOINTS that must be taken in order
# to judge if the CANONICAL_MODEL_JOINTS are visible - those are all approximations!
CMJ_VISIBILITY_IN_KEY_VIDS = [
3, 14, 8, # left front leg
5, 16, 10, # left rear leg
4, 15, 9, # right front leg
6, 17, 11, # right rear leg
7, 19, # tail front, tail back
20, 21, # ear base (but can not be found in blue, se we take the tip)
2, 2, # mouth (was: 22, 2)
20, 21, # ear tips
1, 0, # eyes
18, # withers, not sure where this point is
12, # throat
23, # mid tail
]
# define which bone lengths are used as input to the 2d-to-3d network
IDXS_BONES_NO_REDUNDANCY = [6,7,8,9,16,17,18,19,32,1,2,3,4,5,14,15,24,25,26,27,28,29,30,31]
# load bone lengths of the mean dog (already filtered)
mean_dog_bone_lengths = []
with open(mean_dog_bone_lengths_txt, 'r') as f:
for line in f:
mean_dog_bone_lengths.append(float(line.split('\n')[0]))
MEAN_DOG_BONE_LENGTHS_NO_RED = np.asarray(mean_dog_bone_lengths)[IDXS_BONES_NO_REDUNDANCY] # (24, )
# Body part segmentation:
# the body can be segmented based on the bones and for the new dog model also based on the new shapedirs
# axis_horizontal = self.shapedirs[2, :].reshape((-1, 3))[:, 0]
# all_indices = np.arange(3889)
# tail_indices = all_indices[axis_horizontal.detach().cpu().numpy() < 0.0]
VERTEX_IDS_TAIL = [ 0, 4, 9, 10, 24, 25, 28, 453, 454, 456, 457,
458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468,
469, 470, 471, 472, 473, 474, 475, 724, 725, 726, 727,
728, 729, 730, 731, 813, 975, 976, 977, 1109, 1110, 1111,
1811, 1813, 1819, 1820, 1821, 1822, 1823, 1824, 1825, 1826, 1827,
1828, 1835, 1836, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967,
1968, 1969, 2418, 2419, 2421, 2422, 2423, 2424, 2425, 2426, 2427,
2428, 2429, 2430, 2431, 2432, 2433, 2434, 2435, 2436, 2437, 2438,
2439, 2440, 2688, 2689, 2690, 2691, 2692, 2693, 2694, 2695, 2777,
3067, 3068, 3069, 3842, 3843, 3844, 3845, 3846, 3847]
# same as in https://github.com/benjiebob/WLDO/blob/master/global_utils/config.py
EVAL_KEYPOINTS = [
0, 1, 2, # left front
3, 4, 5, # left rear
6, 7, 8, # right front
9, 10, 11, # right rear
12, 13, # tail start -> end
14, 15, # left ear, right ear
16, 17, # nose, chin
18, 19] # left tip, right tip
KEYPOINT_GROUPS = {
'legs': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], # legs
'tail': [12, 13], # tail
'ears': [14, 15, 18, 19], # ears
'face': [16, 17] # face
}