bite_gradio / scripts /gradio_demo.py
Nadine Rueegg
adjust script
7b976bf
raw
history blame
33.8 kB
# aenv_new_icon_2
# was used for ttoptv6_sketchfab_v16: python src/test_time_optimization/ttopt_fromref_v6_sketchfab.py --workers 12 --save-images True --config refinement_cfg_visualization_withgc_withvertexwisegc_isflat.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar --sketchfab 1
# for stanext images:
# python scripts/gradio.py --workers 12 --config refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar -s ttopt_vtest1
# for all images from the folder datasets/test_image_crops:
# python scripts/gradio.py --workers 12 --config refinement_cfg_test_withvertexwisegc_csaddnonflat_crops.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar -s ttopt_vtest2
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
try:
# os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
except Exception as e:
print(e)
import argparse
import os.path
import json
import numpy as np
import pickle as pkl
import csv
from distutils.util import strtobool
import torch
from torch import nn
import torch.backends.cudnn
from torch.nn import DataParallel
from torch.utils.data import DataLoader
from collections import OrderedDict
import glob
from tqdm import tqdm
from dominate import document
from dominate.tags import *
from PIL import Image
from matplotlib import pyplot as plt
import trimesh
import cv2
import shutil
import random
import gradio as gr
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torchvision.transforms as T
from pytorch3d.structures import Meshes
from pytorch3d.loss import mesh_edge_loss, mesh_laplacian_smoothing, mesh_normal_consistency
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'src'))
from combined_model.train_main_image_to_3d_wbr_withref import do_validation_epoch
from combined_model.model_shape_v7_withref_withgraphcnn import ModelImageTo3d_withshape_withproj
from configs.barc_cfg_defaults import get_cfg_defaults, update_cfg_global_with_yaml, get_cfg_global_updated
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d
from stacked_hourglass.datasets.utils_dataset_selection import get_evaluation_dataset, get_sketchfab_evaluation_dataset, get_crop_evaluation_dataset, get_norm_dict, get_single_crop_dataset_from_image
from test_time_optimization.bite_inference_model_for_ttopt import BITEInferenceModel
from smal_pytorch.smal_model.smal_torch_new import SMAL
from configs.SMAL_configs import SMAL_MODEL_CONFIG
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from test_time_optimization.utils.utils_ttopt import reset_loss_values, get_optimed_pose_with_glob
from combined_model.loss_utils.loss_utils import leg_sideway_error, leg_torsion_error, tail_sideway_error, tail_torsion_error, spine_torsion_error, spine_sideway_error
from combined_model.loss_utils.loss_utils_gc import LossGConMesh, calculate_plane_errors_batch
from combined_model.loss_utils.loss_arap import Arap_Loss
from combined_model.loss_utils.loss_laplacian_mesh_comparison import LaplacianCTF # (coarse to fine animal)
from graph_networks import graphcmr # .utils_mesh import Mesh
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints, save_input_image
random.seed(0)
print(
"torch: ", torch.__version__,
"\ntorchvision: ", torchvision.__version__,
)
def get_prediction(model, img_path_or_img, confidence=0.5):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
get_prediction
parameters:
- img_path - path of the input image
- confidence - threshold value for prediction score
method:
- Image is obtained from the image path
- the image is converted to image tensor using PyTorch's Transforms
- image is passed through the model to get the predictions
- class, box coordinates are obtained, but only prediction score > threshold
are chosen.
"""
if isinstance(img_path_or_img, str):
img = Image.open(img_path_or_img).convert('RGB')
else:
img = img_path_or_img
transform = T.Compose([T.ToTensor()])
img = transform(img)
pred = model([img])
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
pred_class = list(pred[0]['labels'].numpy())
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
pred_score = list(pred[0]['scores'].detach().numpy())
try:
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_class = pred_class[:pred_t+1]
return pred_boxes, pred_class, pred_score
except:
print('no bounding box with a score that is high enough found! -> work on full image')
return None, None, None
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
object_detection_api
parameters:
- img_path_or_img - path of the input image
- confidence - threshold value for prediction score
- rect_th - thickness of bounding box
- text_size - size of the class label text
- text_th - thichness of the text
method:
- prediction is obtained from get_prediction method
- for each prediction, bounding box is drawn and text is written
with opencv
- the final image is displayed
"""
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = img_path_or_img
is_first = True
bbox = None
if boxes is not None:
for i in range(len(boxes)):
cls = pred_cls[i]
if cls == 18 and bbox is None:
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
# cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
bbox = boxes[i]
return img, bbox
# -------------------------------------------------------------------------------------------------------------------- #
model_bbox = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model_bbox.eval()
def run_bbox_inference(input_image):
# load configs
cfg = get_cfg_global_updated()
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
img, bbox = detect_object(model=model_bbox, img_path_or_img=input_image, confidence=0.5)
fig = plt.figure() # plt.figure(figsize=(20,30))
plt.imsave(out_path, img)
return img, bbox
# -------------------------------------------------------------------------------------------------------------------- #
# python scripts/gradio.py --workers 12 --config refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml --model-file-complete=cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar
args_config = "refinement_cfg_test_withvertexwisegc_csaddnonflat.yaml"
args_model_file_complete = "cvpr23_dm39dnnv3barcv2b_refwithgcpervertisflat0morestanding0/checkpoint.pth.tar"
args_suffix = "ttopt_v0"
args_loss_weight_ttopt_path = "bite_loss_weights_ttopt.json"
args_workers = 12
# -------------------------------------------------------------------------------------------------------------------- #
# load configs
# step 1: load default configs
# step 2: load updates from .yaml file
path_config = os.path.join(get_cfg_defaults().barc_dir, 'src', 'configs', args_config)
update_cfg_global_with_yaml(path_config)
cfg = get_cfg_global_updated()
# define path to load the trained model
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, args_model_file_complete)
# define and create paths to save results
out_sub_name = cfg.data.VAL_OPT + '_' + cfg.data.DATASET + '_' + args_suffix + '/'
root_out_path = os.path.join(os.path.dirname(path_model_file_complete).replace(cfg.paths.ROOT_CHECKPOINT_PATH, cfg.paths.ROOT_OUT_PATH + 'results_gradio/'), out_sub_name)
root_out_path_details = root_out_path + 'details/'
if not os.path.exists(root_out_path): os.makedirs(root_out_path)
if not os.path.exists(root_out_path_details): os.makedirs(root_out_path_details)
print('root_out_path: ' + root_out_path)
# other paths
root_data_path = os.path.join(os.path.dirname(__file__), '../', 'data')
# downsampling as used in graph neural network
root_smal_downsampling = os.path.join(root_data_path, 'graphcmr_data')
# remeshing as used for ground contact
remeshing_path = os.path.join(root_data_path, 'smal_data_remeshed', 'uniform_surface_sampling', 'my_smpl_39dogsnorm_Jr_4_dog_remesh4000_info.pkl')
loss_weight_path = os.path.join(os.path.dirname(__file__), '../', 'src', 'configs', 'ttopt_loss_weights', args_loss_weight_ttopt_path)
print(loss_weight_path)
# Select the hardware device to use for training.
if torch.cuda.is_available() and cfg.device=='cuda':
device = torch.device('cuda', torch.cuda.current_device())
torch.backends.cudnn.benchmark = False # True
else:
device = torch.device('cpu')
print('structure_pose_net: ' + cfg.params.STRUCTURE_POSE_NET)
print('refinement network type: ' + cfg.params.REF_NET_TYPE)
print('smal_model_type: ' + cfg.smal.SMAL_MODEL_TYPE)
# prepare complete model
norm_dict = get_norm_dict(data_info=None, device=device)
bite_model = BITEInferenceModel(cfg, path_model_file_complete, norm_dict)
smal_model_type = bite_model.smal_model_type
logscale_part_list = SMAL_MODEL_CONFIG[smal_model_type]['logscale_part_list'] # ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l']
smal = SMAL(smal_model_type=smal_model_type, template_name='neutral', logscale_part_list=logscale_part_list).to(device)
silh_renderer = SilhRenderer(image_size=256).to(device)
# load loss modules -> not necessary!
# loss_module = Loss(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device)
# loss_module_ref = LossRef(smal_model_type=cfg.smal.SMAL_MODEL_TYPE, data_info=StanExt.DATA_INFO, nf_version=cfg.params.NF_VERSION).to(device)
# remeshing utils
with open(remeshing_path, 'rb') as fp:
remeshing_dict = pkl.load(fp)
remeshing_relevant_faces = torch.tensor(remeshing_dict['smal_faces'][remeshing_dict['faceid_closest']], dtype=torch.long, device=device)
remeshing_relevant_barys = torch.tensor(remeshing_dict['barys_closest'], dtype=torch.float32, device=device)
# create path for output files
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
if not os.path.exists(save_imgs_path):
os.makedirs(save_imgs_path)
def run_bite_inference(input_image, bbox=None):
with open(loss_weight_path, 'r') as j:
losses = json.loads(j.read())
shutil.copyfile(loss_weight_path, root_out_path_details + os.path.basename(loss_weight_path))
print(losses)
# prepare dataset and dataset loader
val_dataset, val_loader, len_val_dataset, test_name_list, stanext_data_info, stanext_acc_joints = get_single_crop_dataset_from_image(input_image, bbox=bbox)
# summarize information for normalization
norm_dict = get_norm_dict(stanext_data_info, device)
# get keypoint weights
keypoint_weights = torch.tensor(stanext_data_info.keypoint_weights, dtype=torch.float)[None, :].to(device)
# prepare progress bar
iterable = enumerate(val_loader) # the length of this iterator should be 1
progress = None
if True: # not quiet:
progress = tqdm(iterable, desc='Train', total=len(val_loader), ascii=True, leave=False)
iterable = progress
ind_img_tot = 0
for i, (input, target_dict) in iterable:
batch_size = input.shape[0]
# prepare variables, put them on the right device
for key in target_dict.keys():
if key == 'breed_index':
target_dict[key] = target_dict[key].long().to(device)
elif key in ['index', 'pts', 'tpts', 'target_weight', 'silh', 'silh_distmat_tofg', 'silh_distmat_tobg', 'sim_breed_index', 'img_border_mask']:
target_dict[key] = target_dict[key].float().to(device)
elif key == 'has_seg':
target_dict[key] = target_dict[key].to(device)
else:
pass
input = input.float().to(device)
# get starting values for the optimization
preds_dict = bite_model.get_all_results(input)
# res_normal_and_ref = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['normal', 'ref'])
res = bite_model.get_selected_results(preds_dict=preds_dict, result_networks=['ref'])['ref']
bs = res['pose_rotmat'].shape[0]
all_pose_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, 1:, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 34, 6]
all_orient_6d = rotmat_to_rot6d(res['pose_rotmat'][:, None, :1, :, :].clone().reshape((-1, 3, 3))).reshape((bs, -1, 6)) # [bs, 1, 6]
ind_img = 0
name = (test_name_list[target_dict['index'][ind_img].long()]).replace('/', '__').split('.')[0]
print('ind_img_tot: ' + str(ind_img_tot) + ' -> ' + name)
ind_img_tot += 1
batch_size = 1
# save initial visualizations
# save the image with keypoints as predicted by the stacked hourglass
pred_unp_prep = torch.cat((res['hg_keyp_256'][ind_img, :, :].detach(), res['hg_keyp_scores'][ind_img, :, :]), 1)
inp_img = input[ind_img, :, :, :].detach().clone()
out_path = root_out_path + name + '_hg_key.png'
save_input_image_with_keypoints(inp_img, pred_unp_prep, out_path=out_path, threshold=0.01, print_scores=True, ratio_in_out=1.0) # threshold=0.3
# save the input image
img_inp = input[ind_img, :, :, :].clone()
for t, m, s in zip(img_inp, stanext_data_info.rgb_mean, stanext_data_info.rgb_stddev): t.add_(m) # inverse to transforms.color_normalize()
img_inp = img_inp.detach().cpu().numpy().transpose(1, 2, 0)
img_init = Image.fromarray(np.uint8(255*img_inp)).convert('RGB')
img_init.save(root_out_path_details + name + '_img_ainit.png')
# save ground truth silhouette (for visualization only, it is not used during the optimization)
target_img_silh = Image.fromarray(np.uint8(255*target_dict['silh'][ind_img, :, :].detach().cpu().numpy())).convert('RGB')
target_img_silh.save(root_out_path_details + name + '_target_silh.png')
# save the silhouette as predicted by the stacked hourglass
hg_img_silh = Image.fromarray(np.uint8(255*res['hg_silh_prep'][ind_img, :, :].detach().cpu().numpy())).convert('RGB')
hg_img_silh.save(root_out_path + name + '_hg_silh.png')
# initialize the variables over which we want to optimize
optimed_pose_6d = all_pose_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True)
optimed_orient_6d = all_orient_6d[ind_img, None, :, :].to(device).clone().detach().requires_grad_(True) # [1, 1, 6]
optimed_betas = res['betas'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,30]
optimed_trans_xy = res['trans'][ind_img, None, :2].to(device).clone().detach().requires_grad_(True)
optimed_trans_z =res['trans'][ind_img, None, 2:3].to(device).clone().detach().requires_grad_(True)
optimed_camera_flength = res['flength'][ind_img, None, :].to(device).clone().detach().requires_grad_(True) # [1,1]
n_vert_comp = 2*smal.n_center + 3*smal.n_left
optimed_vert_off_compact = torch.tensor(np.zeros((batch_size, n_vert_comp)), dtype=torch.float,
device=device,
requires_grad=True)
assert len(logscale_part_list) == 7
new_betas_limb_lengths = res['betas_limbs'][ind_img, None, :]
optimed_betas_limbs = new_betas_limb_lengths.to(device).clone().detach().requires_grad_(True) # [1,7]
# define the optimizers
optimizer = torch.optim.SGD(
# [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact],
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs],
lr=5*1e-4, # 1e-3,
momentum=0.9)
optimizer_vshift = torch.optim.SGD(
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_pose_6d, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact],
lr=1e-4, # 1e-4,
momentum=0.9)
nopose_optimizer = torch.optim.SGD(
# [optimed_pose, optimed_trans_xy, optimed_betas, optimed_betas_limbs, optimed_orient, optimed_vert_off_compact],
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs],
lr=5*1e-4, # 1e-3,
momentum=0.9)
nopose_optimizer_vshift = torch.optim.SGD(
[optimed_camera_flength, optimed_trans_z, optimed_trans_xy, optimed_orient_6d, optimed_betas, optimed_betas_limbs, optimed_vert_off_compact],
lr=1e-4, # 1e-4,
momentum=0.9)
# define schedulers
patience = 5
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=patience)
scheduler_vshift = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_vshift,
mode='min',
factor=0.5,
verbose=0,
min_lr=1e-5,
patience=patience)
# set all loss values to 0
losses = reset_loss_values(losses)
# prepare all the target labels: keypoints, silhouette, ground contact, ...
with torch.no_grad():
thr_kp = 0.2
kp_weights = res['hg_keyp_scores']
kp_weights[res['hg_keyp_scores']<thr_kp] = 0
weights_resh = kp_weights[ind_img, None, :, :].reshape((-1)) # target_dict['tpts'][:, :, 2].reshape((-1))
keyp_w_resh = keypoint_weights.repeat((batch_size, 1)).reshape((-1))
# prepare predicted ground contact labels
sm = nn.Softmax(dim=1)
target_gc_class = sm(res['vertexwise_ground_contact'][ind_img, :, :])[None, :, 1] # values between 0 and 1
target_gc_class_remeshed = torch.einsum('ij,aij->ai', remeshing_relevant_barys, target_gc_class[:, remeshing_relevant_faces].to(device=device, dtype=torch.float32))
target_gc_class_remeshed_prep = torch.round(target_gc_class_remeshed).to(torch.long)
vert_colors = np.repeat(255*target_gc_class.detach().cpu().numpy()[0, :, None], 3, 1)
vert_colors[:, 2] = 255
faces_prep = smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
# prepare target silhouette and keypoints, from stacked hourglass predictions
target_hg_silh = res['hg_silh_prep'][ind_img, :, :].detach()
target_kp_resh = res['hg_keyp_256'][ind_img, None, :, :].reshape((-1, 2)).detach()
# find out if ground contact constraints should be used for the image at hand
# print('is flat: ' + str(res['isflat_prep'][ind_img]))
if res['isflat_prep'][ind_img] >= 0.5: # threshold should probably be set higher
isflat = [True]
else:
isflat = [False]
if target_gc_class_remeshed_prep.sum() > 3:
istouching = [True]
else:
istouching = [False]
ignore_pose_optimization = False
##########################################################################################################
# start optimizing for this image
n_iter = 301 # how many iterations are desired? (+1)
loop = tqdm(range(n_iter))
per_loop_lst = []
list_error_procrustes = []
for i in loop:
# for the first 150 iterations steps we don't allow vertex shifts
if i == 0:
current_i = 0
if ignore_pose_optimization:
current_optimizer = nopose_optimizer
else:
current_optimizer = optimizer
current_scheduler = scheduler
current_weight_name = 'weight'
# after 150 iteration steps we start with vertex shifts
elif i == 150:
current_i = 0
if ignore_pose_optimization:
current_optimizer = nopose_optimizer_vshift
else:
current_optimizer = optimizer_vshift
current_scheduler = scheduler_vshift
current_weight_name = 'weight_vshift'
# set up arap loss
if losses["arap"]['weight_vshift'] > 0.0:
with torch.no_grad():
torch_mesh_comparison = Meshes(smal_verts.detach(), faces_prep.detach())
arap_loss = Arap_Loss(meshes=torch_mesh_comparison, device=device)
# is there a laplacian loss similar as in coarse-to-fine?
if losses["lapctf"]['weight_vshift'] > 0.0:
torch_verts_comparison = smal_verts.detach().clone()
smal_model_type_downsampling = '39dogs_norm'
smal_downsampling_npz_name = 'mesh_downsampling_' + os.path.basename(SMAL_MODEL_CONFIG[smal_model_type_downsampling]['smal_model_path']).replace('.pkl', '_template.npz')
smal_downsampling_npz_path = os.path.join(root_smal_downsampling, smal_downsampling_npz_name)
data = np.load(smal_downsampling_npz_path, encoding='latin1', allow_pickle=True)
adjmat = data['A'][0]
laplacian_ctf = LaplacianCTF(adjmat, device=device)
else:
pass
current_optimizer.zero_grad()
# get 3d smal model
optimed_pose_with_glob = get_optimed_pose_with_glob(optimed_orient_6d, optimed_pose_6d)
optimed_trans = torch.cat((optimed_trans_xy, optimed_trans_z), dim=1)
smal_verts, keyp_3d, _ = smal(beta=optimed_betas, betas_limbs=optimed_betas_limbs, pose=optimed_pose_with_glob, vert_off_compact=optimed_vert_off_compact, trans=optimed_trans, keyp_conf='olive', get_skin=True)
# render silhouette and keypoints
pred_silh_images, pred_keyp_raw = silh_renderer(vertices=smal_verts, points=keyp_3d, faces=faces_prep, focal_lengths=optimed_camera_flength)
pred_keyp = pred_keyp_raw[:, :24, :]
# save silhouette reprojection visualization
if i==0:
img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB')
img_silh.save(root_out_path_details + name + '_silh_ainit.png')
my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True)
my_mesh_tri.export(root_out_path_details + name + '_res_ainit.obj')
# silhouette loss
diff_silh = torch.abs(pred_silh_images[0, 0, :, :] - target_hg_silh)
losses['silhouette']['value'] = diff_silh.mean()
# keypoint_loss
output_kp_resh = (pred_keyp[0, :, :]).reshape((-1, 2))
losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt() * \
weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / \
max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)
# losses['keyp']['value'] = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt()*weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)
# pose priors on refined pose
losses['pose_legs_side']['value'] = leg_sideway_error(optimed_pose_with_glob)
losses['pose_legs_tors']['value'] = leg_torsion_error(optimed_pose_with_glob)
losses['pose_tail_side']['value'] = tail_sideway_error(optimed_pose_with_glob)
losses['pose_tail_tors']['value'] = tail_torsion_error(optimed_pose_with_glob)
losses['pose_spine_side']['value'] = spine_sideway_error(optimed_pose_with_glob)
losses['pose_spine_tors']['value'] = spine_torsion_error(optimed_pose_with_glob)
# ground contact loss
sel_verts = torch.index_select(smal_verts, dim=1, index=remeshing_relevant_faces.reshape((-1))).reshape((batch_size, remeshing_relevant_faces.shape[0], 3, 3))
verts_remeshed = torch.einsum('ij,aijk->aik', remeshing_relevant_barys, sel_verts)
# gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, target_dict['has_gc'], target_dict['has_gc_is_touching'])
gc_errors_plane, gc_errors_under_plane = calculate_plane_errors_batch(verts_remeshed, target_gc_class_remeshed_prep, isflat, istouching)
losses['gc_plane']['value'] = torch.mean(gc_errors_plane)
losses['gc_belowplane']['value'] = torch.mean(gc_errors_under_plane)
# edge length of the predicted mesh
if (losses["edge"][current_weight_name] + losses["normal"][ current_weight_name] + losses["laplacian"][ current_weight_name]) > 0:
torch_mesh = Meshes(smal_verts, faces_prep.detach())
losses["edge"]['value'] = mesh_edge_loss(torch_mesh)
# mesh normal consistency
losses["normal"]['value'] = mesh_normal_consistency(torch_mesh)
# mesh laplacian smoothing
losses["laplacian"]['value'] = mesh_laplacian_smoothing(torch_mesh, method="uniform")
# arap loss
if losses["arap"][current_weight_name] > 0.0:
torch_mesh = Meshes(smal_verts, faces_prep.detach())
losses["arap"]['value'] = arap_loss(torch_mesh)
# laplacian loss for comparison (from coarse-to-fine paper)
if losses["lapctf"][current_weight_name] > 0.0:
verts_refine = smal_verts
loss_almost_arap, loss_smooth = laplacian_ctf(verts_refine, torch_verts_comparison)
losses["lapctf"]['value'] = loss_almost_arap
# Weighted sum of the losses
total_loss = 0.0
for k in ['keyp', 'silhouette', 'pose_legs_side', 'pose_legs_tors', 'pose_tail_side', 'pose_tail_tors', 'pose_spine_tors', 'pose_spine_side', 'gc_plane', 'gc_belowplane', 'edge', 'normal', 'laplacian', 'arap', 'lapctf']:
if losses[k][current_weight_name] > 0.0:
total_loss += losses[k]['value'] * losses[k][current_weight_name]
# calculate gradient and make optimization step
total_loss.backward(retain_graph=True) #
current_optimizer.step()
current_scheduler.step(total_loss)
loop.set_description(f"Body Fitting = {total_loss.item():.3f}")
# save the result three times (0, 150, 300)
if i % 150 == 0:
# save silhouette image
img_silh = Image.fromarray(np.uint8(255*pred_silh_images[0, 0, :, :].detach().cpu().numpy())).convert('RGB')
img_silh.save(root_out_path_details + name + '_silh_e' + format(i, '03d') + '.png')
# save image overlay
visualizations = silh_renderer.get_visualization_nograd(smal_verts, faces_prep, optimed_camera_flength, color=0)
pred_tex = visualizations[0, :, :, :].permute((1, 2, 0)).cpu().detach().numpy() / 256
# out_path = root_out_path_details + name + '_tex_pred_e' + format(i, '03d') + '.png'
# plt.imsave(out_path, pred_tex)
input_image_np = img_inp.copy()
im_masked = cv2.addWeighted(input_image_np,0.2,pred_tex,0.8,0)
pred_tex_max = np.max(pred_tex, axis=2)
im_masked[pred_tex_max<0.01, :] = input_image_np[pred_tex_max<0.01, :]
out_path = root_out_path + name + '_comp_pred_e' + format(i, '03d') + '.png'
plt.imsave(out_path, im_masked)
# save mesh
my_mesh_tri = trimesh.Trimesh(vertices=smal_verts[0, ...].detach().cpu().numpy(), faces=faces_prep[0, ...].detach().cpu().numpy(), process=False, maintain_order=True)
my_mesh_tri.visual.vertex_colors = vert_colors
my_mesh_tri.export(root_out_path + name + '_res_e' + format(i, '03d') + '.obj')
# save focal length (together with the mesh this is enough to create an overlay in blender)
out_file_flength = root_out_path_details + name + '_flength_e' + format(i, '03d') # + '.npz'
np.save(out_file_flength, optimed_camera_flength.detach().cpu().numpy())
current_i += 1
# prepare output mesh
mesh = my_mesh_tri # all_results[0]['mesh_posed']
mesh.apply_transform([[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]])
result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')
mesh.export(file_obj=result_path + '.glb')
result_gltf = result_path + '.glb'
return result_gltf
# -------------------------------------------------------------------------------------------------------------------- #
def run_complete_inference(img_path_or_img, crop_choice):
# depending on crop_choice: run faster r-cnn or take the input image directly
if crop_choice == "input image is cropped":
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
output_interm_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
output_interm_image = img_path_or_img
output_interm_bbox = None
else:
output_interm_image, output_interm_bbox = run_bbox_inference(img_path_or_img.copy())
# run barc inference
result_gltf = run_bite_inference(img_path_or_img, output_interm_bbox)
# add white border to image for nicer alignment
output_interm_image_vis = np.concatenate((255*np.ones_like(output_interm_image), output_interm_image, 255*np.ones_like(output_interm_image)), axis=1)
return [result_gltf, result_gltf, output_interm_image_vis]
########################################################################################################################
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
description = '''
# BITE
#### Project Page
* https://bite.is.tue.mpg.de/
#### Description
This is a demo for BITE (*B*eyond Priors for *I*mproved *T*hree-{D} Dog Pose *E*stimation).
You can either submit a cropped image or choose the option to run a pretrained Faster R-CNN in order to obtain a bounding box.
Please have a look at the examples below.
<details>
<summary>More</summary>
#### Citation
```
@inproceedings{bite2023rueegg,
title = {{BITE}: Beyond Priors for Improved Three-{D} Dog Pose Estimation},
author = {R\"uegg, Nadine and Tripathi, Shashank and Schindler, Konrad and Black, Michael J. and Zuffi, Silvia},
booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
pages = {8867-8876},
year = {2023},
}
```
#### Image Sources
* Stanford extra image dataset
* Images from google search engine
* https://www.dogtrainingnation.com/wp-content/uploads/2015/02/keep-dog-training-sessions-short.jpg
* https://thumbs.dreamstime.com/b/hund-und-seine-neue-hundeh%C3%BCtte-36757551.jpg
* https://www.mydearwhippet.com/wp-content/uploads/2021/04/whippet-temperament-2.jpg
* https://media.istockphoto.com/photos/ibizan-hound-at-the-shore-in-winter-picture-id1092705644?k=20&m=1092705644&s=612x612&w=0&h=ppwg92s9jI8GWnk22SOR_DWWNP8b2IUmLXSQmVey5Ss=
</details>
'''
example_images = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
random.shuffle(example_images)
# example_images.reverse()
# examples = [[img, "input image is cropped"] for img in example_images]
examples = []
for img in example_images:
if os.path.basename(img)[:2] == 'z_':
examples.append([img, "use Faster R-CNN to get a bounding box"])
else:
examples.append([img, "input image is cropped"])
demo = gr.Interface(
fn=run_complete_inference,
description=description,
# inputs=gr.Image(type="filepath", label="Input Image"),
inputs=[gr.Image(label="Input Image"),
gr.Radio(["input image is cropped", "use Faster R-CNN to get a bounding box"], value="use Faster R-CNN to get a bounding box", label="Crop Choice"),
],
outputs=[
gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
gr.File(label="Download 3D Model"),
gr.Image(label="Bounding Box (Faster R-CNN prediction)"),
],
examples=examples,
thumbnail="bite_thumbnail.png",
allow_flagging="never",
cache_examples=True,
examples_per_page=14,
)
demo.launch(share=True)