bite_gradio / src /stacked_hourglass /datasets /stanext24_withgc_v2.py
Nadine Rueegg
initial commit with code and data
753fd9a
raw
history blame
33.7 kB
# this version includes all ground contact labeled data, not only the sitting/lying poses
import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
import csv
import pickle as pkl
from csv import DictReader
from pycocotools.mask import decode as decode_RLE
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from configs.data_info import COMPLETE_DATA_INFO_24
from stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from stacked_hourglass.utils.misc import to_torch
from stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import stacked_hourglass.datasets.utils_stanext as utils_stanext
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints
from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES
from configs.dataset_path_configs import STANEXT_RELATED_DATA_ROOT_DIR
from smal_pytorch.smal_model.smal_basics import get_symmetry_indices
def read_csv(csv_file):
with open(csv_file,'r') as f:
reader = csv.reader(f)
headers = next(reader)
row_list = [{h:x for (h,x) in zip(headers,row)} for row in reader]
return row_list
class StanExtGC(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO_24
# Suggested joints to use for keypoint reprojection error calculations
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]
def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None, val_opt='test', add_nonflat=False):
self.V12 = V12
self.is_train = is_train # training set or test set
if do_augment == 'yes':
self.do_augment = True
elif do_augment == 'no':
self.do_augment = False
elif do_augment=='default':
if self.is_train:
self.do_augment = True
else:
self.do_augment = False
else:
raise ValueError
self.inp_res = inp_res
self.out_res = out_res
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.dataset_mode = dataset_mode
self.add_nonflat = add_nonflat
if self.dataset_mode=='complete' or self.dataset_mode=='complete_with_gc' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
self.calc_seg = True
else:
self.calc_seg = False
self.val_opt = val_opt
# create train/val split
self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
self.train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
self.train_name_list = list(self.train_dict.keys()) # 7004
if self.val_opt == 'test':
self.test_dict = init_test_dict
self.test_name_list = list(self.test_dict.keys())
elif self.val_opt == 'val':
self.test_dict = init_val_dict
self.test_name_list = list(self.test_dict.keys())
else:
raise NotImplementedError
# import pdb; pdb.set_trace()
# path_gc_annots_overview = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage3/gc_annots_overview_first699.pkl'
path_gc_annots_overview_stage3 = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage3/gc_annots_overview_stage3complete.pkl'
with open(path_gc_annots_overview_stage3, 'rb') as f:
self.gc_annots_overview_stage3 = pkl.load(f) # 2346
path_gc_annots_overview_stage2b_contact = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage2b/gc_annots_overview_stage2b_contact_complete.pkl'
with open(path_gc_annots_overview_stage2b_contact, 'rb') as f:
self.gc_annots_overview_stage2b_contact = pkl.load(f) # 832
path_gc_annots_overview_stage2b_nocontact = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stage2b/gc_annots_overview_stage2b_nocontact_complete.pkl'
with open(path_gc_annots_overview_stage2b_nocontact, 'rb') as f:
self.gc_annots_overview_stage2b_nocontact = pkl.load(f) # 32
path_gc_annots_overview_stages12_all4pawsincontact = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stages12together/gc_annots_overview_all4pawsincontact.pkl'
with open(path_gc_annots_overview_stages12_all4pawsincontact, 'rb') as f:
self.gc_annots_overview_stages12_all4pawsincontact = pkl.load(f) # 1, symbolic only
path_gc_annots_categories_stages12 = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/stages12together/gc_annots_categories_stages12_complete.pkl'
with open(path_gc_annots_categories_stages12, 'rb') as f:
self.gc_annots_categories = pkl.load(f) # 12538
test_name_list_gc = []
for name in self.test_name_list:
if name in self.gc_annots_categories.keys():
value = self.gc_annots_categories[name]
if (value['is_vis'] in [True, None]) and (value['is_flat'] in [True, None]) and (not value['pose'] == 'cantsee'):
test_name_list_gc.append(name)
train_name_list_gc = []
for name in self.train_name_list:
value = self.gc_annots_categories[name]
if (value['is_vis'] in [True, None]) and (value['is_flat'] in [True, None]) and (not value['pose'] == 'cantsee'):
train_name_list_gc.append(name)
# import pdb; pdb.set_trace()
'''self.gc_annots_overview = self.gc_annots_overview_stage3
list_gc_labelled_images = list(self.gc_annots_overview.keys())
test_name_list_gc = []
for name in self.test_name_list:
if name.split('.')[0] in list_gc_labelled_images:
test_name_list_gc.append(name)
train_name_list_gc = []
for name in self.train_name_list:
if name.split('.')[0] in list_gc_labelled_images:
train_name_list_gc.append(name)'''
random.seed(4)
random.shuffle(test_name_list_gc)
# new: add images with non-flat ground in the end
# import pdb; pdb.set_trace()
if self.add_nonflat:
self.train_name_list_nonflat = []
for name in self.train_name_list:
if name in self.gc_annots_categories.keys():
value = self.gc_annots_categories[name]
if (value['is_vis'] in [True, None]) and (value['is_flat'] in [False]):
self.train_name_list_nonflat.append(name)
self.test_name_list_nonflat = []
for name in self.test_name_list:
if name in self.gc_annots_categories.keys():
value = self.gc_annots_categories[name]
if (value['is_vis'] in [True, None]) and (value['is_flat'] in [False]):
self.test_name_list_nonflat.append(name)
self.test_name_list = test_name_list_gc
self.train_name_list = train_name_list_gc
'''
already_labelled = ['n02093991-Irish_terrier/n02093991_2874.jpg',
'n02093754-Border_terrier/n02093754_1062.jpg',
'n02092339-Weimaraner/n02092339_1672.jpg',
'n02096177-cairn/n02096177_4916.jpg',
'n02110185-Siberian_husky/n02110185_725.jpg',
'n02110806-basenji/n02110806_761.jpg',
'n02094433-Yorkshire_terrier/n02094433_2474.jpg',
'n02097474-Tibetan_terrier/n02097474_8796.jpg',
'n02099601-golden_retriever/n02099601_2495.jpg']
self.trainvaltest_dict = dict(self.train_dict)
for d in (init_test_dict, init_val_dict): self.trainvaltest_dict.update(d)
gc_annot_csv = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/data/stanext_related_data/ground_contact_annotations/my_gcannotations_qualification.csv'
gc_row_list = read_csv(gc_annot_csv)
json_acceptable_string = (gc_row_list[0]['vertices']).replace("'", "\"")
self.gc_dict = json.loads(json_acceptable_string)
self.train_name_list = already_labelled
self.test_name_list = already_labelled
'''
# stanext breed dict (contains for each name a stanext specific index)
breed_json_path = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'StanExt_breed_dict_v2.json')
self.breed_dict = self.get_breed_dict(breed_json_path, create_new_breed_json=False)
# load smal symmetry info
self.sym_ids_dict = get_symmetry_indices()
'''
self.train_name_list = sorted(self.train_name_list)
self.test_name_list = sorted(self.test_name_list)
random.seed(4)
random.shuffle(self.train_name_list)
random.shuffle(self.test_name_list)
if shorten_dataset_to is not None:
# sometimes it is useful to have a smaller set (validation speed, debugging)
self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]
# special case for debugging: 12 similar images
if shorten_dataset_to == 12:
my_sample = self.test_name_list[2]
for ind in range(0, 12):
self.test_name_list[ind] = my_sample
'''
print('len(dataset): ' + str(self.__len__()))
# add results for eyes, whithers and throat as obtained through anipose -> they are used
# as pseudo ground truth at training time.
# self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v0_results_on_StanExt')
self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v1_results_on_StanExt') # this is from hg_anipose_after01bugfix_v1
# self.prepare_anipose_res_and_save()
def get_data_sampler_info(self):
# for custom data sampler
if self.is_train:
name_list = self.train_name_list
else:
name_list = self.test_name_list
info_dict = {'name_list': name_list,
'stanext_breed_dict': self.breed_dict,
'breeds_abbrev_dict': COMPLETE_ABBREV_DICT,
'breeds_summary': COMPLETE_SUMMARY_BREEDS,
'breeds_sim_martix_raw': SIM_MATRIX_RAW,
'breeds_sim_abbrev_inds': SIM_ABBREV_INDICES
}
return info_dict
def get_data_sampler_info_gc(self):
# for custom data sampler
if self.is_train:
name_list = self.train_name_list
else:
name_list = self.test_name_list
info_dict_gc = {'name_list': name_list,
'gc_annots_categories': self.gc_annots_categories,
}
if self.add_nonflat:
if self.is_train:
name_list_nonflat = self.train_name_list_nonflat
else:
name_list_nonflat = self.test_name_list_nonflat
info_dict_gc['name_list_nonflat'] = name_list_nonflat
return info_dict_gc
def get_breed_dict(self, breed_json_path, create_new_breed_json=False):
if create_new_breed_json:
breed_dict = {}
breed_index = 0
for img_name in self.train_name_list:
folder_name = img_name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
if not (folder_name in breed_dict):
breed_dict[folder_name] = {
'breed_name': breed_name,
'index': breed_index}
breed_index += 1
with open(breed_json_path, 'w', encoding='utf-8') as f: json.dump(breed_dict, f, ensure_ascii=False, indent=4)
else:
with open(breed_json_path) as json_file: breed_dict = json.load(json_file)
return breed_dict
def prepare_anipose_res_and_save(self):
# I only had to run this once ...
# path_animalpose_res_root = '/ps/scratch/nrueegg/new_projects/Animals/dog_project/pytorch-stacked-hourglass/results/animalpose_hg8_v0/'
path_animalpose_res_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/results/results/hg_anipose_after01bugfix_v1/stanext24_XXX_e300_json/'
train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
train_name_list = list(train_dict.keys())
val_name_list = list(init_val_dict.keys())
test_name_list = list(init_test_dict.keys())
all_dicts = [train_dict, init_val_dict, init_test_dict]
all_name_lists = [train_name_list, val_name_list, test_name_list]
all_prefixes = ['train', 'val', 'test']
for ind in range(3):
this_name_list = all_name_lists[ind]
this_dict = all_dicts[ind]
this_prefix = all_prefixes[ind]
for index in range(0, len(this_name_list)):
print(index)
name = this_name_list[index]
data = this_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
path_animalpose_res = os.path.join(path_animalpose_res_root.replace('XXX', this_prefix), data['img_path'].replace('.jpg', '.json'))
# prepare predicted keypoints
'''if is_train:
path_animalpose_res = os.path.join(path_animalpose_res_root, 'train_stanext', 'res_' + str(index) + '.json')
else:
path_animalpose_res = os.path.join(path_animalpose_res_root, 'test_stanext', 'res_' + str(index) + '.json')
'''
with open(path_animalpose_res) as f: animalpose_data = json.load(f)
anipose_joints_256 = np.asarray(animalpose_data['pred_joints_256']).reshape((-1, 3))
anipose_center = animalpose_data['center']
anipose_scale = animalpose_data['scale']
anipose_joints_64 = anipose_joints_256 / 4
'''thrs_21to24 = 0.2
anipose_joints_21to24 = np.zeros((4, 3)))
for ind_j in range(0:4):
anipose_joints_untrans = transform(anipose_joints_64[20+ind_j, 0:2], anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_trans_again = transform(anipose_joints_untrans+1, anipose_center, anipose_scale, [64, 64], invert=False, rot=0, as_int=False)
anipose_joints_21to24[ind_j, :2] = anipose_joints_untrans
if anipose_joints_256[20+ind_j, 2] >= thrs_21to24:
anipose_joints_21to24[ind_j, 2] = 1'''
anipose_joints_0to24 = np.zeros((24, 3))
for ind_j in range(24):
# anipose_joints_untrans = transform(anipose_joints_64[ind_j, 0:2], anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_untrans = transform(anipose_joints_64[ind_j, 0:2]+1, anipose_center, anipose_scale, [64, 64], invert=True, rot=0, as_int=False)-1
anipose_joints_0to24[ind_j, :2] = anipose_joints_untrans
anipose_joints_0to24[ind_j, 2] = anipose_joints_256[ind_j, 2]
# save anipose result for usage later on
out_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
if not os.path.exists(os.path.dirname(out_path)): os.makedirs(os.path.dirname(out_path))
out_dict = {'orig_anipose_joints_256': list(anipose_joints_256.reshape((-1))),
'anipose_joints_0to24': list(anipose_joints_0to24[:, :3].reshape((-1))),
'orig_index': index,
'orig_scale': animalpose_data['scale'],
'orig_center': animalpose_data['center'],
'data_split': this_prefix, # 'is_train': is_train,
}
with open(out_path, 'w') as outfile: json.dump(out_dict, outfile)
return
def __getitem__(self, index):
if self.is_train:
train_val_test_Prefix = 'train'
if self.add_nonflat and index >= len(self.train_name_list):
name = self.train_name_list_nonflat[index - len(self.train_name_list)]
gc_isflat = 0
else:
name = self.train_name_list[index]
gc_isflat = 1
data = self.train_dict[name]
else:
train_val_test_Prefix = self.val_opt # 'val' or 'test'
if self.add_nonflat and index >= len(self.test_name_list):
name = self.test_name_list_nonflat[index - len(self.test_name_list)]
gc_isflat = 0
else:
name = self.test_name_list[index]
gc_isflat = 1
data = self.test_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
'''
# for debugging only
train_val_test_Prefix = 'train'
name = self.train_name_list[index]
data = self.trainvaltest_dict[name]
img_path = os.path.join(self.img_folder, data['img_path'])
if self.dataset_mode=='complete_with_gc':
n_verts_smal = 3889
gc_info_raw = self.gc_dict['bite/' + name] # a list with all vertex numbers that are in ground contact
gc_info = []
gc_info_tch = torch.zeros((n_verts_smal))
for ind_v in gc_info_raw:
if ind_v < n_verts_smal:
gc_info.append(ind_v)
gc_info_tch[ind_v] = 1
gc_info_available = True
'''
# array of shape (n_verts_smal, 3) with [first: no-contact=0 contact=1 second: index of vertex third: dist]
n_verts_smal = 3889
if gc_isflat:
if name.split('.')[0] in self.gc_annots_overview_stage3:
gc_vertdists_overview = self.gc_annots_overview_stage3[name.split('.')[0]]['gc_vertdists_overview']
gc_info_tch = torch.tensor(gc_vertdists_overview[:, :]) # torch.tensor(gc_vertdists_overview[:, 0])
gc_info_available = True
gc_touching_ground = True
elif name.split('.')[0] in self.gc_annots_overview_stage2b_contact:
gc_vertdists_overview = self.gc_annots_overview_stage2b_contact[name.split('.')[0]]['gc_vertdists_overview']
gc_info_tch = torch.tensor(gc_vertdists_overview[:, :]) # torch.tensor(gc_vertdists_overview[:, 0])
gc_info_available = True
gc_touching_ground = True
elif name.split('.')[0] in self.gc_annots_overview_stage2b_nocontact:
gc_info_tch = torch.zeros((n_verts_smal, 3))
gc_info_tch[:, 2] = 2.0 # big distance
gc_info_available = True
gc_touching_ground = False
else:
if 'pose' in self.gc_annots_categories[name]:
pose_label = self.gc_annots_categories[name]['pose']
if pose_label in ['standing_4paws']:
gc_vertdists_overview = self.gc_annots_overview_stages12_all4pawsincontact['all4pawsincontact']['gc_vertdists_overview']
gc_info_tch = torch.tensor(gc_vertdists_overview[:, :]) # torch.tensor(gc_vertdists_overview[:, 0])
gc_info_available = True
gc_touching_ground = True
elif pose_label in ['jumping_nottouching']:
gc_info_tch = torch.zeros((n_verts_smal, 3))
gc_info_tch[:, 2] = 2.0 # big distance
gc_info_available = True
gc_touching_ground = False
else:
gc_info_tch = torch.zeros((n_verts_smal, 3))
gc_info_tch[:, 2] = 2.0 # big distance
gc_info_available = False
gc_touching_ground = False
else:
gc_info_tch = torch.zeros((n_verts_smal, 3))
gc_info_tch[:, 2] = 2.0 # big distance
gc_info_available = False
gc_touching_ground = False
# is this pose approximatly symmetric? head pose is not considered
approximately_symmetric_pose = False
if 'pose' in self.gc_annots_categories[name]:
pose_label = self.gc_annots_categories[name]['pose']
if pose_label in ['lying_sym', 'sitting_sym']:
approximately_symmetric_pose = True
# import pdb; pdb.set_trace()
debugging = False
if debugging:
import shutil
import trimesh
from smal_pytorch.smal_model.smal_torch_new import SMAL
smal = SMAL()
verts = smal.v_template.detach().cpu().numpy()
faces = smal.faces.detach().cpu().numpy()
vert_colors = np.repeat(255*gc_info_tch[:, 0].detach().cpu().numpy()[:, None], 3, 1)
# vert_colors = np.repeat(255*gc_info_np[:, None], 3, 1)
my_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False, maintain_order=True)
my_mesh.visual.vertex_colors = vert_colors
debug_folder = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/gc_debugging/'
my_mesh.export(debug_folder + (name.split('/')[1]).replace('.jpg', '_withgc.obj'))
shutil.copy(img_path, debug_folder + name.split('/')[1])
sf = self.scale_factor
rf = self.rot_factor
try:
# import pdb; pdb.set_trace()
'''new_anipose_root_path = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/results/results/hg_anipose_after01bugfix_v1/stanext24_XXX_e300_json/'
adjusted_new_anipose_root_path = new_anipose_root_path.replace('XXX', train_val_test_Prefix)
new_anipose_res_path = adjusted_new_anipose_root_path + data['img_path'].replace('.jpg', '.json')
with open(new_anipose_res_path) as f: new_anipose_data = json.load(f)
'''
anipose_res_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
with open(anipose_res_path) as f: anipose_data = json.load(f)
anipose_thr = 0.2
anipose_joints_0to24 = np.asarray(anipose_data['anipose_joints_0to24']).reshape((-1, 3))
anipose_joints_0to24_scores = anipose_joints_0to24[:, 2]
# anipose_joints_0to24_scores[anipose_joints_0to24_scores>anipose_thr] = 1.0
anipose_joints_0to24_scores[anipose_joints_0to24_scores<anipose_thr] = 0.0
anipose_joints_0to24[:, 2] = anipose_joints_0to24_scores
except:
# REMARK: This happens sometimes!!! maybe once every 10th image..?
print('no anipose eye keypoints!')
anipose_joints_0to24 = np.zeros((24, 3))
joints = np.concatenate((np.asarray(data['joints'])[:20, :], anipose_joints_0to24[20:24, :]), axis=0)
joints[joints[:, 2]==0, :2] = 0 # avoid nan values
pts = torch.Tensor(joints)
# inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
# sf = scale * 200.0 / res[0] # res[0]=256
# center = center * 1.0 / sf
# scale = scale / sf = 256 / 200
# h = 200 * scale
bbox_xywh = data['img_bbox']
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
# For single-person pose estimation with a centered/scaled figure
nparts = pts.size(0)
img = load_image(img_path) # CxHxW
# segmentation map (we reshape it to 3xHxW, such that we can do the
# same transformations as with the image)
if self.calc_seg:
seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
seg = torch.cat(3*[seg])
r = 0
do_flip = False
if self.do_augment:
s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
# Flip
if random.random() <= 0.5:
do_flip = True
img = fliplr(img)
if self.calc_seg:
seg = fliplr(seg)
pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
c[0] = img.size(2) - c[0]
# flip ground contact annotations
gc_info_tch_swapped = torch.zeros_like(gc_info_tch)
gc_info_tch_swapped[self.sym_ids_dict['center'], :] = gc_info_tch[self.sym_ids_dict['center'], :]
gc_info_tch_swapped[self.sym_ids_dict['right'], :] = gc_info_tch[self.sym_ids_dict['left'], :]
gc_info_tch_swapped[self.sym_ids_dict['left'], :] = gc_info_tch[self.sym_ids_dict['right'], :]
gc_info_tch = gc_info_tch_swapped
# Color
img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
# import pdb; pdb.set_trace()
debugging = False
if debugging and do_flip:
import shutil
import trimesh
from smal_pytorch.smal_model.smal_torch_new import SMAL
smal = SMAL()
verts = smal.v_template.detach().cpu().numpy()
faces = smal.faces.detach().cpu().numpy()
vert_colors = np.repeat(255*gc_info_tch[:, 0].detach().cpu().numpy()[:, None], 3, 1)
# vert_colors = np.repeat(255*gc_info_np[:, None], 3, 1)
my_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False, maintain_order=True)
my_mesh.visual.vertex_colors = vert_colors
debug_folder = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/gc_debugging/'
my_mesh.export(debug_folder + (name.split('/')[1]).replace('.jpg', '_withgc_flip.obj'))
# Prepare image and groundtruth map
inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
img_border_mask = torch.all(inp > 1.0/256, dim = 0).unsqueeze(0).float() # 1 is foreground
inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
if self.calc_seg:
seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)
# Generate ground truth
tpts = pts.clone()
target_weight = tpts[:, 2].clone().view(nparts, 1)
target = torch.zeros(nparts, self.out_res, self.out_res)
for i in range(nparts):
# if tpts[i, 2] > 0: # This is evil!!
if tpts[i, 1] > 0:
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False)) - 1
target[i], vis = draw_labelmap(target[i], tpts[i], self.sigma, type=self.label_type)
target_weight[i, 0] *= vis
# NEW:
'''target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
target_new[(target_weight_new==0).reshape((-1)), :, :] = 0'''
# --- Meta info
this_breed = self.breed_dict[name.split('/')[0]] # 120
# add information about location within breed similarity matrix
folder_name = name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
abbrev = COMPLETE_ABBREV_DICT[breed_name]
try:
sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix
except: # some breeds are not in the xlsx file
sim_breed_index = -1
meta = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
'ind_dataset': 0} # ind_dataset=0 for stanext or stanexteasy or stanext 2
meta2 = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'ind_dataset': 3}
# import pdb; pdb.set_trace()
# out_path_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/stanext_preprocessing/old_animalpose_version/'
# out_path_root = '/is/cluster/work/nrueegg/icon_pifu_related/barc_for_bite/debugging/stanext_preprocessing/v0/'
# save_input_image_with_keypoints(inp, meta['tpts'], out_path = out_path_root + name.replace('/', '_'), ratio_in_out=self.inp_res/self.out_res)
# return different things depending on dataset_mode
if self.dataset_mode=='keyp_only':
# save_input_image_with_keypoints(inp, meta['tpts'], out_path='./test_input_stanext.png', ratio_in_out=self.inp_res/self.out_res)
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg':
meta['silh'] = seg[0, :, :]
meta['name'] = name
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg_and_partseg':
# partseg is fake! this does only exist such that this dataset can be combined with an other datset that has part segmentations
meta2['silh'] = seg[0, :, :]
meta2['name'] = name
fake_body_part_matrix = torch.ones((3, 256, 256)).long() * (-1)
meta2['body_part_matrix'] = fake_body_part_matrix
return inp, target, meta2
elif (self.dataset_mode=='complete') or (self.dataset_mode=='complete_with_gc'):
target_dict = meta
target_dict['silh'] = seg[0, :, :]
# NEW for silhouette loss
target_dict['img_border_mask'] = img_border_mask
target_dict['has_seg'] = True
# ground contact
if self.dataset_mode=='complete_with_gc':
target_dict['has_gc_is_touching'] = gc_touching_ground
target_dict['has_gc'] = gc_info_available
target_dict['gc'] = gc_info_tch
target_dict['approximately_symmetric_pose'] = approximately_symmetric_pose
target_dict['isflat'] = gc_isflat
if target_dict['silh'].sum() < 1:
if ((not self.is_train) and self.val_opt == 'test'):
raise ValueError
elif self.is_train:
print('had to replace training image')
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
else:
# There seem to be a few validation images without segmentation
# which would lead to nan in iou calculation
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
return inp, target_dict
else:
print('sampling error')
import pdb; pdb.set_trace()
raise ValueError
def get_len_nonflat(self):
if self.is_train:
return len(self.train_name_list_nonflat)
else:
return len(self.test_name_list_nonflat)
def __len__(self):
if self.is_train:
return len(self.train_name_list)
else:
return len(self.test_name_list)