Spaces:
Runtime error
Runtime error
Nadine Rueegg
commited on
Commit
β’
d847241
1
Parent(s):
3051026
add faster rcnn visualization and avoid reloading model parameters
Browse files- .gitignore +1 -0
- README.md +1 -1
- datasets/test_image_crops/201030094143-stock-rhodesian-ridgeback-super-tease.jpg +0 -0
- datasets/test_image_crops/Akita-standing-outdoors-in-the-summer-400x267.jpg +0 -0
- datasets/test_image_crops/Picture10.png +0 -0
- datasets/test_image_crops/Picture11.png +0 -0
- datasets/test_image_crops/Picture14.png +0 -0
- datasets/test_image_crops/Picture15.png +0 -0
- datasets/test_image_crops/Picture2.jpg +0 -0
- datasets/test_image_crops/Picture22.png +0 -0
- datasets/test_image_crops/Picture25.jpg +0 -0
- datasets/test_image_crops/Picture26.png +0 -0
- datasets/test_image_crops/Picture5.png +0 -0
- datasets/test_image_crops/Picture7.png +0 -0
- datasets/test_image_crops/image_n02089078-black-and-tan_coonhound_n02089078_3810.png +0 -0
- datasets/test_image_crops/z_dog_lying_2.jpg +0 -0
- datasets/test_image_crops/z_dog_sitting.jpg +0 -0
- datasets/test_image_crops/z_dog_training.jpg +0 -0
- datasets/test_image_crops/z_ibizan_standing.jpg +0 -0
- gradio_demo/barc_demo_v6.py +291 -0
.gitignore
CHANGED
@@ -2,6 +2,7 @@ gradio_demo_old
|
|
2 |
gradio_demo/*.png
|
3 |
gradio_demo/*.glb
|
4 |
gradio_cached_examples/
|
|
|
5 |
results/gradio_examples/*.png
|
6 |
results/gradio_examples/*.jpg
|
7 |
results/gradio_examples/*.glb
|
|
|
2 |
gradio_demo/*.png
|
3 |
gradio_demo/*.glb
|
4 |
gradio_cached_examples/
|
5 |
+
datasets/test_image_crops_old
|
6 |
results/gradio_examples/*.png
|
7 |
results/gradio_examples/*.jpg
|
8 |
results/gradio_examples/*.glb
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: pink
|
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
-
app_file: ./gradio_demo/
|
9 |
pinned: false
|
10 |
python_version: 3.7.6
|
11 |
---
|
|
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
+
app_file: ./gradio_demo/barc_demo_v6.py
|
9 |
pinned: false
|
10 |
python_version: 3.7.6
|
11 |
---
|
datasets/test_image_crops/201030094143-stock-rhodesian-ridgeback-super-tease.jpg
DELETED
Binary file (102 kB)
|
|
datasets/test_image_crops/Akita-standing-outdoors-in-the-summer-400x267.jpg
DELETED
Binary file (22.9 kB)
|
|
datasets/test_image_crops/Picture10.png
ADDED
datasets/test_image_crops/Picture11.png
ADDED
datasets/test_image_crops/Picture14.png
ADDED
datasets/test_image_crops/Picture15.png
ADDED
datasets/test_image_crops/Picture2.jpg
ADDED
datasets/test_image_crops/Picture22.png
ADDED
datasets/test_image_crops/Picture25.jpg
ADDED
datasets/test_image_crops/Picture26.png
ADDED
datasets/test_image_crops/Picture5.png
ADDED
datasets/test_image_crops/Picture7.png
ADDED
datasets/test_image_crops/image_n02089078-black-and-tan_coonhound_n02089078_3810.png
DELETED
Binary file (129 kB)
|
|
datasets/test_image_crops/z_dog_lying_2.jpg
ADDED
datasets/test_image_crops/z_dog_sitting.jpg
ADDED
datasets/test_image_crops/z_dog_training.jpg
ADDED
datasets/test_image_crops/z_ibizan_standing.jpg
ADDED
gradio_demo/barc_demo_v6.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python gradio_demo/barc_demo_v6.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
|
5 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
6 |
+
try:
|
7 |
+
# os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
|
8 |
+
os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
|
9 |
+
except Exception as e:
|
10 |
+
print(e)
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import os
|
14 |
+
import glob
|
15 |
+
import torch
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
import torchvision
|
18 |
+
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
19 |
+
import torchvision.transforms as T
|
20 |
+
import cv2
|
21 |
+
from matplotlib import pyplot as plt
|
22 |
+
from PIL import Image
|
23 |
+
import random
|
24 |
+
import gradio as gr
|
25 |
+
|
26 |
+
import sys
|
27 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
|
28 |
+
from stacked_hourglass.datasets.imgcropslist import ImgCrops
|
29 |
+
from combined_model.train_main_image_to_3d_withbreedrel import do_visual_epoch
|
30 |
+
from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj
|
31 |
+
from configs.barc_cfg_defaults import get_cfg_global_updated
|
32 |
+
|
33 |
+
random.seed(0)
|
34 |
+
|
35 |
+
print(
|
36 |
+
"torch: ", torch.__version__,
|
37 |
+
"\ntorchvision: ", torchvision.__version__,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def get_prediction(model, img_path_or_img, confidence=0.5):
|
43 |
+
"""
|
44 |
+
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
|
45 |
+
get_prediction
|
46 |
+
parameters:
|
47 |
+
- img_path - path of the input image
|
48 |
+
- confidence - threshold value for prediction score
|
49 |
+
method:
|
50 |
+
- Image is obtained from the image path
|
51 |
+
- the image is converted to image tensor using PyTorch's Transforms
|
52 |
+
- image is passed through the model to get the predictions
|
53 |
+
- class, box coordinates are obtained, but only prediction score > threshold
|
54 |
+
are chosen.
|
55 |
+
"""
|
56 |
+
if isinstance(img_path_or_img, str):
|
57 |
+
img = Image.open(img_path_or_img).convert('RGB')
|
58 |
+
else:
|
59 |
+
img = img_path_or_img
|
60 |
+
transform = T.Compose([T.ToTensor()])
|
61 |
+
img = transform(img)
|
62 |
+
pred = model([img])
|
63 |
+
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
|
64 |
+
pred_class = list(pred[0]['labels'].numpy())
|
65 |
+
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
|
66 |
+
pred_score = list(pred[0]['scores'].detach().numpy())
|
67 |
+
try:
|
68 |
+
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
|
69 |
+
pred_boxes = pred_boxes[:pred_t+1]
|
70 |
+
pred_class = pred_class[:pred_t+1]
|
71 |
+
return pred_boxes, pred_class, pred_score
|
72 |
+
except:
|
73 |
+
print('no bounding box with a score that is high enough found! -> work on full image')
|
74 |
+
return None, None, None
|
75 |
+
|
76 |
+
|
77 |
+
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
|
78 |
+
"""
|
79 |
+
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
|
80 |
+
object_detection_api
|
81 |
+
parameters:
|
82 |
+
- img_path_or_img - path of the input image
|
83 |
+
- confidence - threshold value for prediction score
|
84 |
+
- rect_th - thickness of bounding box
|
85 |
+
- text_size - size of the class label text
|
86 |
+
- text_th - thichness of the text
|
87 |
+
method:
|
88 |
+
- prediction is obtained from get_prediction method
|
89 |
+
- for each prediction, bounding box is drawn and text is written
|
90 |
+
with opencv
|
91 |
+
- the final image is displayed
|
92 |
+
"""
|
93 |
+
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
|
94 |
+
if isinstance(img_path_or_img, str):
|
95 |
+
img = cv2.imread(img_path_or_img)
|
96 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
97 |
+
else:
|
98 |
+
img = img_path_or_img
|
99 |
+
is_first = True
|
100 |
+
bbox = None
|
101 |
+
if boxes is not None:
|
102 |
+
for i in range(len(boxes)):
|
103 |
+
cls = pred_cls[i]
|
104 |
+
if cls == 18 and bbox is None:
|
105 |
+
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
|
106 |
+
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
|
107 |
+
# cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
|
108 |
+
bbox = boxes[i]
|
109 |
+
return img, bbox
|
110 |
+
|
111 |
+
|
112 |
+
# -------------------------------------------------------------------------------------------------------------------- #
|
113 |
+
model_bbox = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
114 |
+
model_bbox.eval()
|
115 |
+
|
116 |
+
def run_bbox_inference(input_image):
|
117 |
+
# load configs
|
118 |
+
cfg = get_cfg_global_updated()
|
119 |
+
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
|
120 |
+
img, bbox = detect_object(model=model_bbox, img_path_or_img=input_image, confidence=0.5)
|
121 |
+
fig = plt.figure() # plt.figure(figsize=(20,30))
|
122 |
+
plt.imsave(out_path, img)
|
123 |
+
return img, bbox
|
124 |
+
# -------------------------------------------------------------------------------------------------------------------- #
|
125 |
+
|
126 |
+
|
127 |
+
# -------------------------------------------------------------------------------------------------------------------- #
|
128 |
+
# load configs
|
129 |
+
cfg = get_cfg_global_updated()
|
130 |
+
# Select the hardware device to use for inference.
|
131 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
132 |
+
print('---> device: ' + device)
|
133 |
+
# disable gradient calculations.
|
134 |
+
torch.set_grad_enabled(False)
|
135 |
+
# prepare complete model
|
136 |
+
complete_model = ModelImageTo3d_withshape_withproj(
|
137 |
+
num_stage_comb=cfg.params.NUM_STAGE_COMB, num_stage_heads=cfg.params.NUM_STAGE_HEADS, \
|
138 |
+
num_stage_heads_pose=cfg.params.NUM_STAGE_HEADS_POSE, trans_sep=cfg.params.TRANS_SEP, \
|
139 |
+
arch=cfg.params.ARCH, n_joints=cfg.params.N_JOINTS, n_classes=cfg.params.N_CLASSES, \
|
140 |
+
n_keyp=cfg.params.N_KEYP, n_bones=cfg.params.N_BONES, n_betas=cfg.params.N_BETAS, n_betas_limbs=cfg.params.N_BETAS_LIMBS, \
|
141 |
+
n_breeds=cfg.params.N_BREEDS, n_z=cfg.params.N_Z, image_size=cfg.params.IMG_SIZE, \
|
142 |
+
silh_no_tail=cfg.params.SILH_NO_TAIL, thr_keyp_sc=cfg.params.KP_THRESHOLD, add_z_to_3d_input=cfg.params.ADD_Z_TO_3D_INPUT,
|
143 |
+
n_segbps=cfg.params.N_SEGBPS, add_segbps_to_3d_input=cfg.params.ADD_SEGBPS_TO_3D_INPUT, add_partseg=cfg.params.ADD_PARTSEG, n_partseg=cfg.params.N_PARTSEG, \
|
144 |
+
fix_flength=cfg.params.FIX_FLENGTH, structure_z_to_betas=cfg.params.STRUCTURE_Z_TO_B, structure_pose_net=cfg.params.STRUCTURE_POSE_NET,
|
145 |
+
nf_version=cfg.params.NF_VERSION)
|
146 |
+
# load trained model
|
147 |
+
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, 'barc_complete', 'model_best.pth.tar')
|
148 |
+
print(path_model_file_complete)
|
149 |
+
assert os.path.isfile(path_model_file_complete)
|
150 |
+
print('Loading model weights from file: {}'.format(path_model_file_complete))
|
151 |
+
checkpoint_complete = torch.load(path_model_file_complete, map_location=device)
|
152 |
+
state_dict_complete = checkpoint_complete['state_dict']
|
153 |
+
complete_model.load_state_dict(state_dict_complete, strict=False)
|
154 |
+
complete_model = complete_model.to(device)
|
155 |
+
# create path for output files
|
156 |
+
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
|
157 |
+
if not os.path.exists(save_imgs_path):
|
158 |
+
os.makedirs(save_imgs_path)
|
159 |
+
|
160 |
+
def run_barc_inference(input_image, bbox=None):
|
161 |
+
input_image_list = [input_image]
|
162 |
+
if bbox is not None:
|
163 |
+
input_bbox_list = [bbox]
|
164 |
+
else:
|
165 |
+
input_bbox_list = None
|
166 |
+
# prepare data loader
|
167 |
+
val_dataset = ImgCrops(image_list=input_image_list, bbox_list=input_bbox_list, dataset_mode='complete')
|
168 |
+
test_name_list = val_dataset.test_name_list
|
169 |
+
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
|
170 |
+
num_workers=0, pin_memory=True, drop_last=False)
|
171 |
+
# run visual evaluation
|
172 |
+
all_results = do_visual_epoch(val_loader, complete_model, device,
|
173 |
+
ImgCrops.DATA_INFO,
|
174 |
+
weight_dict=None,
|
175 |
+
acc_joints=ImgCrops.ACC_JOINTS,
|
176 |
+
save_imgs_path=None, # save_imgs_path,
|
177 |
+
metrics='all',
|
178 |
+
test_name_list=test_name_list,
|
179 |
+
render_all=cfg.params.RENDER_ALL,
|
180 |
+
pck_thresh=cfg.params.PCK_THRESH,
|
181 |
+
return_results=True)
|
182 |
+
# prepare output mesh
|
183 |
+
mesh = all_results[0]['mesh_posed']
|
184 |
+
mesh.apply_transform([[-1, 0, 0, 0],
|
185 |
+
[0, -1, 0, 0],
|
186 |
+
[0, 0, 1, 1],
|
187 |
+
[0, 0, 0, 1]])
|
188 |
+
result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')
|
189 |
+
mesh.export(file_obj=result_path + '.glb')
|
190 |
+
result_gltf = result_path + '.glb'
|
191 |
+
return result_gltf
|
192 |
+
# -------------------------------------------------------------------------------------------------------------------- #
|
193 |
+
|
194 |
+
|
195 |
+
def run_complete_inference(img_path_or_img, crop_choice):
|
196 |
+
# depending on crop_choice: run faster r-cnn or take the input image directly
|
197 |
+
if crop_choice == "input image is cropped":
|
198 |
+
if isinstance(img_path_or_img, str):
|
199 |
+
img = cv2.imread(img_path_or_img)
|
200 |
+
output_interm_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
201 |
+
else:
|
202 |
+
output_interm_image = img_path_or_img
|
203 |
+
output_interm_bbox = None
|
204 |
+
else:
|
205 |
+
output_interm_image, output_interm_bbox = run_bbox_inference(img_path_or_img.copy())
|
206 |
+
# run barc inference
|
207 |
+
result_gltf = run_barc_inference(img_path_or_img, output_interm_bbox)
|
208 |
+
# add white border to image for nicer alignment
|
209 |
+
output_interm_image_vis = np.concatenate((255*np.ones_like(output_interm_image), output_interm_image, 255*np.ones_like(output_interm_image)), axis=1)
|
210 |
+
return [result_gltf, result_gltf, output_interm_image_vis]
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
########################################################################################################################
|
216 |
+
|
217 |
+
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
|
218 |
+
|
219 |
+
description = '''
|
220 |
+
# BARC
|
221 |
+
|
222 |
+
#### Project Page
|
223 |
+
* https://barc.is.tue.mpg.de/
|
224 |
+
|
225 |
+
#### Description
|
226 |
+
This is a demo for BARC (*B*reed *A*ugmented *R*egression using *C*lassification).
|
227 |
+
You can either submit a cropped image or choose the option to run a pretrained Faster R-CNN in order to obtain a bounding box.
|
228 |
+
Please have a look at the examples below.
|
229 |
+
<details>
|
230 |
+
|
231 |
+
<summary>More</summary>
|
232 |
+
|
233 |
+
#### Citation
|
234 |
+
|
235 |
+
```
|
236 |
+
@inproceedings{BARC:2022,
|
237 |
+
title = {BARC}: Learning to Regress {3D} Dog Shape from Images by Exploiting Breed Information,
|
238 |
+
author = {Rueegg, Nadine and Zuffi, Silvia and Schindler, Konrad and Black, Michael J.},
|
239 |
+
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
|
240 |
+
year = {2022}
|
241 |
+
}
|
242 |
+
```
|
243 |
+
|
244 |
+
#### Image Sources (Examples)
|
245 |
+
* Stanford extra image dataset
|
246 |
+
* Images from google search engine
|
247 |
+
* https://www.dogtrainingnation.com/wp-content/uploads/2015/02/keep-dog-training-sessions-short.jpg
|
248 |
+
* https://thumbs.dreamstime.com/b/hund-und-seine-neue-hundeh%C3%BCtte-36757551.jpg
|
249 |
+
* https://www.mydearwhippet.com/wp-content/uploads/2021/04/whippet-temperament-2.jpg
|
250 |
+
* https://media.istockphoto.com/photos/ibizan-hound-at-the-shore-in-winter-picture-id1092705644?k=20&m=1092705644&s=612x612&w=0&h=ppwg92s9jI8GWnk22SOR_DWWNP8b2IUmLXSQmVey5Ss=
|
251 |
+
|
252 |
+
|
253 |
+
</details>
|
254 |
+
'''
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
example_images = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
|
262 |
+
random.shuffle(example_images)
|
263 |
+
examples = []
|
264 |
+
for img in example_images:
|
265 |
+
if os.path.basename(img)[:2] == 'z_':
|
266 |
+
examples.append([img, "use Faster R-CNN to get a bounding box"])
|
267 |
+
else:
|
268 |
+
examples.append([img, "input image is cropped"])
|
269 |
+
|
270 |
+
demo = gr.Interface(
|
271 |
+
fn=run_complete_inference,
|
272 |
+
description=description,
|
273 |
+
# inputs=gr.Image(type="filepath", label="Input Image"),
|
274 |
+
inputs=[gr.Image(label="Input Image"),
|
275 |
+
gr.Radio(["input image is cropped", "use Faster R-CNN to get a bounding box"], value="use Faster R-CNN to get a bounding box", label="Crop Choice"),
|
276 |
+
],
|
277 |
+
outputs=[
|
278 |
+
gr.Model3D(
|
279 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
|
280 |
+
gr.File(label="Download 3D Model"),
|
281 |
+
gr.Image(label="Bounding Box (Faster R-CNN prediction)"),
|
282 |
+
|
283 |
+
],
|
284 |
+
examples=examples,
|
285 |
+
thumbnail="barc_thumbnail.png",
|
286 |
+
allow_flagging="never",
|
287 |
+
cache_examples=False, # True
|
288 |
+
examples_per_page=14,
|
289 |
+
)
|
290 |
+
|
291 |
+
demo.launch()
|