Nadine Rueegg
initial commit for barc
7629b39
raw
history blame
4.51 kB
# Modified from:
# https://github.com/anibali/pytorch-stacked-hourglass
# https://github.com/bearpaw/pytorch-pose
import numpy as np
import torch
from .imutils import im_to_numpy, im_to_torch
from .misc import to_torch
from .pilutil import imresize, imrotate
def color_normalize(x, mean, std):
if x.size(0) == 1:
x = x.repeat(3, 1, 1)
for t, m, s in zip(x, mean, std):
t.sub_(m)
return x
def flip_back(flip_output, hflip_indices):
"""flip and rearrange output maps"""
return fliplr(flip_output)[:, hflip_indices]
def shufflelr(x, width, hflip_indices):
"""flip and rearrange coords"""
# Flip horizontal
x[:, 0] = width - x[:, 0]
# Change left-right parts
x = x[hflip_indices]
return x
def fliplr(x):
"""Flip images horizontally."""
if torch.is_tensor(x):
return torch.flip(x, [-1])
else:
return np.ascontiguousarray(np.flip(x, -1))
def get_transform(center, scale, res, rot=0):
"""
General image processing functions
"""
# Generate transformation matrix
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
if not rot == 0:
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3,3))
rot_rad = rot * np.pi / 180
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0,:2] = [cs, -sn]
rot_mat[1,:2] = [sn, cs]
rot_mat[2,2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0,2] = -res[1]/2
t_mat[1,2] = -res[0]/2
t_inv = t_mat.copy()
t_inv[:2,2] *= -1
t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t)))
return t
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
# Transform pixel location to different reference
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
if as_int:
return new_pt[:2].astype(int) + 1
else:
return new_pt[:2] + 1
def transform_preds(coords, center, scale, res):
# size = coords.size()
# coords = coords.view(-1, coords.size(-1))
# print(coords.size())
for p in range(coords.size(0)):
coords[p, 0:2] = to_torch(transform(coords[p, 0:2], center, scale, res, 1, 0))
return coords
def crop(img, center, scale, res, rot=0, interp='bilinear'):
# import pdb; pdb.set_trace()
# mode = 'F'
img = im_to_numpy(img)
# Preprocessing for efficient cropping
ht, wd = img.shape[0], img.shape[1]
sf = scale * 200.0 / res[0]
if sf < 2:
sf = 1
else:
new_size = int(np.math.floor(max(ht, wd) / sf))
new_ht = int(np.math.floor(ht / sf))
new_wd = int(np.math.floor(wd / sf))
if new_size < 2:
return torch.zeros(res[0], res[1], img.shape[2]) \
if len(img.shape) > 2 else torch.zeros(res[0], res[1])
else:
img = imresize(img, [new_ht, new_wd], interp=interp) # , mode=mode)
center = center * 1.0 / sf
scale = scale / sf
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
# Padding so that when rotated proper amount of context is included
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
if not rot == 0:
ul -= pad
br += pad
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0]
new_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(img.shape[1], br[0])
old_y = max(0, ul[1]), min(img.shape[0], br[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]]
if not rot == 0:
# Remove padding
new_img = imrotate(new_img, rot, interp=interp) # , mode=mode)
new_img = new_img[pad:-pad, pad:-pad]
new_img = im_to_torch(imresize(new_img, res, interp=interp)) #, mode=mode))
return new_img