Spaces:
Runtime error
Runtime error
# Modified from: | |
# https://github.com/anibali/pytorch-stacked-hourglass | |
# https://github.com/bearpaw/pytorch-pose | |
import numpy as np | |
from .misc import to_numpy, to_torch | |
from .pilutil import imread, imresize | |
from kornia.geometry.subpix import dsnt | |
import torch | |
def im_to_numpy(img): | |
img = to_numpy(img) | |
img = np.transpose(img, (1, 2, 0)) # H*W*C | |
return img | |
def im_to_torch(img): | |
img = np.transpose(img, (2, 0, 1)) # C*H*W | |
img = to_torch(img).float() | |
if img.max() > 1: | |
img /= 255 | |
return img | |
def load_image(img_path): | |
# H x W x C => C x H x W | |
return im_to_torch(imread(img_path, mode='RGB')) | |
# ============================================================================= | |
# Helpful functions generating groundtruth labelmap | |
# ============================================================================= | |
def gaussian(shape=(7,7),sigma=1): | |
""" | |
2D gaussian mask - should give the same result as MATLAB's | |
fspecial('gaussian',[shape],[sigma]) | |
""" | |
m,n = [(ss-1.)/2. for ss in shape] | |
y,x = np.ogrid[-m:m+1,-n:n+1] | |
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) | |
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 | |
return to_torch(h).float() | |
def draw_labelmap_orig(img, pt, sigma, type='Gaussian'): | |
# Draw a 2D gaussian | |
# Adopted from https://github.com/anewell/pose-hg-train/blob/master/src/pypose/draw.py | |
# maximum value of the gaussian is 1 | |
img = to_numpy(img) | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)] | |
br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)] | |
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or | |
br[0] < 0 or br[1] < 0): | |
# If not, just return the image as is | |
return to_torch(img), 0 | |
# Generate gaussian | |
size = 6 * sigma + 1 | |
x = np.arange(0, size, 1, float) | |
y = x[:, np.newaxis] | |
x0 = y0 = size // 2 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
if type == 'Gaussian': | |
g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
elif type == 'Cauchy': | |
g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], img.shape[1]) | |
img_y = max(0, ul[1]), min(br[1], img.shape[0]) | |
img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return to_torch(img), 1 | |
def draw_labelmap(img, pt, sigma, type='Gaussian'): | |
# Draw a 2D gaussian | |
# real probability distribution: the sum of all values is 1 | |
img = to_numpy(img) | |
if not type == 'Gaussian': | |
raise NotImplementedError | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)] | |
br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)] | |
if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or | |
br[0] < 0 or br[1] < 0): | |
# If not, just return the image as is | |
return to_torch(img), 0 | |
# Generate gaussian | |
# img_new = dsnt.render_gaussian2d(mean=torch.tensor([[-1, 0]]).float(), std=torch.tensor([[sigma, sigma]]).float(), size=(img.shape[0], img.shape[1]), normalized_coordinates=False) | |
img_new = dsnt.render_gaussian2d(mean=torch.tensor([[pt[0], pt[1]]]).float(), \ | |
std=torch.tensor([[sigma, sigma]]).float(), \ | |
size=(img.shape[0], img.shape[1]), \ | |
normalized_coordinates=False) | |
img_new = img_new[0, :, :] # this is a torch image | |
return img_new, 1 | |
def draw_multiple_labelmaps(out_res, pts, sigma, type='Gaussian'): | |
# Draw a 2D gaussian | |
# real probability distribution: the sum of all values is 1 | |
if not type == 'Gaussian': | |
raise NotImplementedError | |
# Generate gaussians | |
n_pts = pts.shape[0] | |
imgs_new = dsnt.render_gaussian2d(mean=pts[:, :2], \ | |
std=torch.tensor([[sigma, sigma]]).float().repeat((n_pts, 1)), \ | |
size=(out_res[0], out_res[1]), \ | |
normalized_coordinates=False) # shape: (n_pts, out_res[0], out_res[1]) | |
visibility_orig = imgs_new.sum(axis=2).sum(axis=1) # shape: (n_pts) | |
visibility = torch.zeros((n_pts, 1), dtype=torch.float32) | |
visibility[visibility_orig>=0.99999] = 1.0 | |
# import pdb; pdb.set_trace() | |
return imgs_new, visibility.int() |