Nadine Rueegg
initial commit for barc
7629b39
raw
history blame
4.82 kB
# Modified from:
# https://github.com/anibali/pytorch-stacked-hourglass
# https://github.com/bearpaw/pytorch-pose
import torch
from torch.nn.functional import interpolate
def _resize(tensor, size, mode='bilinear'):
"""Resize the image.
Args:
tensor (torch.Tensor): The image tensor to be resized.
size (tuple of int): Size of the resized image (height, width).
mode (str): The pixel sampling interpolation mode to be used.
Returns:
Tensor: The resized image tensor.
"""
assert len(size) == 2
# If the tensor is already the desired size, return it immediately.
if tensor.shape[-2] == size[0] and tensor.shape[-1] == size[1]:
return tensor
if not tensor.is_floating_point():
dtype = tensor.dtype
tensor = tensor.to(torch.float32)
tensor = _resize(tensor, size, mode)
return tensor.to(dtype)
out_shape = (*tensor.shape[:-2], *size)
if tensor.ndimension() < 3:
raise Exception('tensor must be at least 2D')
elif tensor.ndimension() == 3:
tensor = tensor.unsqueeze(0)
elif tensor.ndimension() > 4:
tensor = tensor.view(-1, *tensor.shape[-3:])
align_corners = None
if mode in {'linear', 'bilinear', 'trilinear'}:
align_corners = False
resized = interpolate(tensor, size=size, mode=mode, align_corners=align_corners)
return resized.view(*out_shape)
def _crop(tensor, t, l, h, w, padding_mode='constant', fill=0):
"""Crop the image, padding out-of-bounds regions.
Args:
tensor (torch.Tensor): The image tensor to be cropped.
t (int): Top pixel coordinate.
l (int): Left pixel coordinate.
h (int): Height of the cropped image.
w (int): Width of the cropped image.
padding_mode (str): Padding mode (currently "constant" is the only valid option).
fill (float): Fill value to use with constant padding.
Returns:
Tensor: The cropped image tensor.
"""
# If the _crop region is wholly within the image, simply narrow the tensor.
if t >= 0 and l >= 0 and t + h <= tensor.size(-2) and l + w <= tensor.size(-1):
return tensor[..., t:t+h, l:l+w]
if padding_mode == 'constant':
result = torch.full((*tensor.size()[:-2], h, w), fill,
device=tensor.device, dtype=tensor.dtype)
else:
raise Exception('_crop only supports "constant" padding currently.')
sx1 = l
sy1 = t
sx2 = l + w
sy2 = t + h
dx1 = 0
dy1 = 0
if sx1 < 0:
dx1 = -sx1
w += sx1
sx1 = 0
if sy1 < 0:
dy1 = -sy1
h += sy1
sy1 = 0
if sx2 >= tensor.size(-1):
w -= sx2 - tensor.size(-1)
if sy2 >= tensor.size(-2):
h -= sy2 - tensor.size(-2)
# Copy the in-bounds sub-area of the _crop region into the result tensor.
if h > 0 and w > 0:
src = tensor.narrow(-2, sy1, h).narrow(-1, sx1, w)
dst = result.narrow(-2, dy1, h).narrow(-1, dx1, w)
dst.copy_(src)
return result
def calculate_fit_contain_output_area(in_height, in_width, out_height, out_width):
ih, iw = in_height, in_width
k = min(out_width / iw, out_height / ih)
oh = round(k * ih)
ow = round(k * iw)
y_off = (out_height - oh) // 2
x_off = (out_width - ow) // 2
return y_off, x_off, oh, ow
def fit(tensor, size, fit_mode='cover', resize_mode='bilinear', *, fill=0):
"""Fit the image within the given spatial dimensions.
Args:
tensor (torch.Tensor): The image tensor to be fit.
size (tuple of int): Size of the output (height, width).
fit_mode (str): 'fill', 'contain', or 'cover'. These behave in the same way as CSS's
`object-fit` property.
fill (float): padding value (only applicable in 'contain' mode).
Returns:
Tensor: The resized image tensor.
"""
if fit_mode == 'fill':
return _resize(tensor, size, mode=resize_mode)
elif fit_mode == 'contain':
y_off, x_off, oh, ow = calculate_fit_contain_output_area(*tensor.shape[-2:], *size)
resized = _resize(tensor, (oh, ow), mode=resize_mode)
result = tensor.new_full((*tensor.size()[:-2], *size), fill)
result[..., y_off:y_off + oh, x_off:x_off + ow] = resized
return result
elif fit_mode == 'cover':
ih, iw = tensor.shape[-2:]
k = max(size[-1] / iw, size[-2] / ih)
oh = round(k * ih)
ow = round(k * iw)
resized = _resize(tensor, (oh, ow), mode=resize_mode)
y_trim = (oh - size[-2]) // 2
x_trim = (ow - size[-1]) // 2
result = _crop(resized, y_trim, x_trim, size[-2], size[-1])
return result
raise ValueError('Invalid fit_mode: ' + repr(fit_mode))