Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn import functional as F | |
import numpy as np | |
from torch import nn | |
def geodesic_loss(R, Rgt): | |
# see: Silvia tiger pose model 3d code | |
num_joints = R.shape[1] | |
RT = R.permute(0,1,3,2) | |
A = torch.matmul(RT.view(-1,3,3),Rgt.view(-1,3,3)) | |
# torch.trace works only for 2D tensors | |
n = A.shape[0] | |
po_loss = 0 | |
eps = 1e-7 | |
T = torch.sum(A[:,torch.eye(3).bool()],1) | |
theta = torch.clamp(0.5*(T-1), -1+eps, 1-eps) | |
angles = torch.acos(theta) | |
loss = torch.sum(angles)/(n*num_joints) | |
return loss | |
class geodesic_loss_R(nn.Module): | |
def __init__(self,reduction='mean'): | |
super(geodesic_loss_R, self).__init__() | |
self.reduction = reduction | |
self.eps = 1e-6 | |
# batch geodesic loss for rotation matrices | |
def bgdR(self,bRgts,bRps): | |
#return((bRgts - bRps)**2.).mean() | |
return geodesic_loss(bRgts, bRps) | |
def forward(self, ypred, ytrue): | |
theta = geodesic_loss(ypred,ytrue) | |
if self.reduction == 'mean': | |
return torch.mean(theta) | |
else: | |
return theta | |
def batch_rodrigues_numpy(theta): | |
""" Code adapted from spin | |
Convert axis-angle representation to rotation matrix. | |
Remark: | |
this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta) | |
Args: | |
theta: size = [B, 3] | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
l1norm = np.linalg.norm(theta + 1e-8, ord = 2, axis = 1) | |
# angle = np.unsqueeze(l1norm, -1) | |
angle = l1norm.reshape((-1, 1)) | |
# normalized = np.div(theta, angle) | |
normalized = theta / angle | |
angle = angle * 0.5 | |
v_cos = np.cos(angle) | |
v_sin = np.sin(angle) | |
# quat = np.cat([v_cos, v_sin * normalized], dim = 1) | |
quat = np.concatenate([v_cos, v_sin * normalized], axis = 1) | |
return quat_to_rotmat_numpy(quat) | |
def quat_to_rotmat_numpy(quat): | |
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py | |
Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
# norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) | |
norm_quat = norm_quat/np.linalg.norm(norm_quat, ord=2, axis=1, keepdims=True) | |
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] | |
B = quat.shape[0] | |
# w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
w2, x2, y2, z2 = w**2, x**2, y**2, z**2 | |
wx, wy, wz = w*x, w*y, w*z | |
xy, xz, yz = x*y, x*z, y*z | |
rotMat = np.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, | |
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, | |
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], axis=1).reshape(B, 3, 3) | |
return rotMat | |
def batch_rodrigues(theta): | |
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py | |
Convert axis-angle representation to rotation matrix. | |
Remark: | |
this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta) | |
Args: | |
theta: size = [B, 3] | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim = 1) | |
return quat_to_rotmat(quat) | |
def batch_rot2aa(Rs, epsilon=1e-7): | |
""" Code from: https://github.com/vchoutas/expose/blob/dffc38d62ad3817481d15fe509a93c2bb606cb8b/expose/utils/rotation_utils.py#L55 | |
Rs is B x 3 x 3 | |
void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis, | |
double& out_theta) | |
{ | |
double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1); | |
c = cMathUtil::Clamp(c, -1.0, 1.0); | |
out_theta = std::acos(c); | |
if (std::abs(out_theta) < 0.00001) | |
{ | |
out_axis = tVector(0, 0, 1, 0); | |
} | |
else | |
{ | |
double m21 = mat(2, 1) - mat(1, 2); | |
double m02 = mat(0, 2) - mat(2, 0); | |
double m10 = mat(1, 0) - mat(0, 1); | |
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10); | |
out_axis[0] = m21 / denom; | |
out_axis[1] = m02 / denom; | |
out_axis[2] = m10 / denom; | |
out_axis[3] = 0; | |
} | |
} | |
""" | |
cos = 0.5 * (torch.einsum('bii->b', [Rs]) - 1) | |
cos = torch.clamp(cos, -1 + epsilon, 1 - epsilon) | |
theta = torch.acos(cos) | |
m21 = Rs[:, 2, 1] - Rs[:, 1, 2] | |
m02 = Rs[:, 0, 2] - Rs[:, 2, 0] | |
m10 = Rs[:, 1, 0] - Rs[:, 0, 1] | |
denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10 + epsilon) | |
axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom) | |
axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom) | |
axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom) | |
return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1) | |
def quat_to_rotmat(quat): | |
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py | |
Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w*x, w*y, w*z | |
xy, xz, yz = x*y, x*z, y*z | |
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz, | |
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx, | |
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) | |
return rotMat | |
def rot6d_to_rotmat(rot6d): | |
""" Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py | |
Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
rot6d = rot6d.view(-1,3,2) | |
a1 = rot6d[:, :, 0] | |
a2 = rot6d[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
rotmat = torch.stack((b1, b2, b3), dim=-1) | |
return rotmat | |
def rotmat_to_rot6d(rotmat): | |
""" Convert 3x3 rotation matrix to 6D rotation representation. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,3,3) Batch of corresponding rotation matrices | |
Output: | |
(B,6) Batch of 6-D rotation representations | |
""" | |
rot6d = rotmat[:, :, :2].reshape((-1, 6)) | |
return rot6d | |
def main(): | |
# rotation matrix and 6d representation | |
# see "On the Continuity of Rotation Representations in Neural Networks" | |
from pyquaternion import Quaternion | |
batch_size = 5 | |
rotmat = np.zeros((batch_size, 3, 3)) | |
for ind in range(0, batch_size): | |
rotmat[ind, :, :] = Quaternion.random().rotation_matrix | |
rotmat_torch = torch.Tensor(rotmat) | |
rot6d = rotmat_to_rot6d(rotmat_torch) | |
rotmat_rec = rot6d_to_rotmat(rot6d) | |
print('..................... 1 ....................') | |
print(rotmat_torch[0, :, :]) | |
print(rotmat_rec[0, :, :]) | |
print('Conversion from rotmat to rot6d and inverse are ok!') | |
# rotation matrix and axis angle representation | |
import kornia | |
input = torch.rand(1, 3) | |
output = kornia.angle_axis_to_rotation_matrix(input) | |
input_rec = kornia.rotation_matrix_to_angle_axis(output) | |
print('..................... 2 ....................') | |
print(input) | |
print(input_rec) | |
print('Kornia implementation for rotation_matrix_to_angle_axis is wrong!!!!') | |
# For non-differential conversions use scipy: | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html | |
from scipy.spatial.transform import Rotation as R | |
r = R.from_matrix(rotmat[0, :, :]) | |
print('..................... 3 ....................') | |
print(r.as_matrix()) | |
print(r.as_rotvec()) | |
print(r.as_quaternion) | |
# one might furthermore have a look at: | |
# https://github.com/silviazuffi/smalst/blob/master/utils/transformations.py | |
if __name__ == "__main__": | |
main() | |