ruisp commited on
Commit
2518c94
1 Parent(s): c657ec0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from langchain import PromptTemplate, LLMChain
4
+ from langchain.chains.question_answering import load_qa_chain
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.embeddings import HuggingFaceEmbeddings
7
+ from langchain.chat_models import ChatOpenAI
8
+ import gradio as gr
9
+ import json
10
+
11
+ from prompts import PROMPT_EXTRACT_DATE, PROMPT_FED_ANALYST
12
+ from filterminutes import search_with_filter
13
+
14
+ # --------------------------Load the sentence transformer and the vector store--------------------------#
15
+ model_name = 'sentence-transformers/all-mpnet-base-v2'
16
+ model_kwargs = {'device': 'cpu'}
17
+ encode_kwargs = {'normalize_embeddings': False}
18
+ embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)
19
+ vs = FAISS.load_local("MINUTES_FOMC_HISTORY", embeddings)
20
+
21
+ # --------------------------Import the prompts------------------#
22
+ PROMPT_DATE = PromptTemplate.from_template(PROMPT_EXTRACT_DATE)
23
+ PROMPT_ANALYST = PromptTemplate.from_template(PROMPT_FED_ANALYST)
24
+
25
+
26
+ # --------------------------define the qa chain for answering queries--------------------------#
27
+ def load_chains(open_ai_key):
28
+ date_extractor = LLMChain(llm=ChatOpenAI(temperature=0, model_name='gpt-3.5-turbo', openai_api_key=open_ai_key),
29
+ prompt=PROMPT_DATE)
30
+ fed_chain = load_qa_chain(llm=ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, openai_api_key=open_ai_key),
31
+ chain_type='stuff', prompt=PROMPT_ANALYST)
32
+ return date_extractor, fed_chain
33
+
34
+
35
+ def get_chain(query, api_key):
36
+ """
37
+ Detects the date, computes similarity, and answers the query using
38
+ only documents corresponding to the date requested.
39
+ The query is first passed to the date extractor to extract the date
40
+ and then to the qa chain to answer the query.
41
+ Parameters
42
+ ----------
43
+ query : str
44
+ Query to be answered.
45
+ api_key : str
46
+ OpenAI API key.
47
+
48
+ Returns
49
+ Answer to the query.
50
+ """
51
+ date_extractor, fed_chain = load_chains(api_key)
52
+ logging.info('Extracting the date in numeric format..')
53
+ date_response = date_extractor.run(query)
54
+ if date_response != 'False':
55
+ filter_date = json.loads(date_response)
56
+
57
+ logging.info(f'Date parameters retrieved: {filter_date}')
58
+ logging.info('Running the qa with filtered context..')
59
+ filtered_context = search_with_filter(vs, query, init_k=200, step=300, target_k=7, filter_dict=filter_date)
60
+
61
+ logging.info(20 * '-' + 'Metadata for the documents to be used' + 20 * '-')
62
+ for doc in filtered_context:
63
+ logging.info(doc.metadata)
64
+ else:
65
+ logging.info('No date elements found. Running the qa without filtering can output incorrect results.')
66
+ filtered_context = vs.similarity_search(query, k=7)
67
+ return fed_chain({'input_documents': filtered_context[:7], 'question': query})['output_text']
68
+
69
+
70
+ if __name__ == '__main__':
71
+ app = gr.Interface(fn=get_chain,
72
+ inputs=[gr.Textbox(lines=2, placeholder="Enter your query", label='Your query'),
73
+ gr.Textbox(lines=1, placeholder="Your OpenAI API key here", label='OpenAI Key')],
74
+ description='Query the public database in FRED from 1936-2023',
75
+ outputs=gr.Textbox(lines=1, label='Answer'),
76
+ title='Chat with the FOMC meeting minutes',
77
+ examples=[['What was the economic outlook from the staff presented in the meeting '
78
+ 'of April 2009 with respect to labour market developments and industrial production?'],
79
+ ['Who were the voting members present in the meeting on March 2010?'],
80
+ ['How important was the pandemic of Covid-19 in the discussions during 2020?'],
81
+ ['What was the impact of the oil crisis for the economic outlook during 1973?']],
82
+ )
83
+ app.launch()