Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
|
| 5 |
# Load the Qwen2 0.5B model
|
|
@@ -12,6 +13,114 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 12 |
trust_remote_code=True
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
| 16 |
"""Generate a response from the Qwen2 model based on the input prompt."""
|
| 17 |
|
|
@@ -38,23 +147,29 @@ def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
|
| 38 |
return response.strip()
|
| 39 |
|
| 40 |
def process_input(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
max_length,
|
| 45 |
temperature,
|
| 46 |
top_p
|
| 47 |
):
|
| 48 |
-
"""Process the input and
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
final_prompt = f"{
|
|
|
|
|
|
|
| 58 |
|
| 59 |
# Generate response from the model
|
| 60 |
response = generate_response(
|
|
@@ -69,32 +184,47 @@ def process_input(
|
|
| 69 |
# Create the Gradio interface
|
| 70 |
with gr.Blocks() as demo:
|
| 71 |
gr.Markdown("# Qwen2 0.5B Game Analysis Tester")
|
| 72 |
-
gr.Markdown("
|
| 73 |
|
| 74 |
with gr.Row():
|
| 75 |
with gr.Column():
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
value="
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
|
|
|
|
| 94 |
with gr.Row():
|
| 95 |
max_length = gr.Slider(
|
| 96 |
minimum=50,
|
| 97 |
-
maximum=
|
| 98 |
value=256,
|
| 99 |
step=1,
|
| 100 |
label="Max Response Length"
|
|
@@ -114,40 +244,46 @@ with gr.Blocks() as demo:
|
|
| 114 |
label="Top P"
|
| 115 |
)
|
| 116 |
|
|
|
|
| 117 |
submit_btn = gr.Button("Generate Response")
|
| 118 |
|
| 119 |
with gr.Column():
|
|
|
|
| 120 |
final_prompt_display = gr.Textbox(
|
| 121 |
label="Final Prompt Sent to Model",
|
| 122 |
-
lines=
|
| 123 |
)
|
| 124 |
response_display = gr.Textbox(
|
| 125 |
label="Model Response",
|
| 126 |
-
lines=
|
| 127 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
|
|
|
| 129 |
submit_btn.click(
|
| 130 |
process_input,
|
| 131 |
inputs=[
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
max_length,
|
| 136 |
temperature,
|
| 137 |
top_p
|
| 138 |
],
|
| 139 |
outputs=[final_prompt_display, response_display]
|
| 140 |
)
|
| 141 |
-
|
| 142 |
-
gr.Markdown("""
|
| 143 |
-
## Tips for Testing
|
| 144 |
-
|
| 145 |
-
1. Start with simple prompts to gauge the model's basic understanding
|
| 146 |
-
2. Gradually increase complexity to find the model's limitations
|
| 147 |
-
3. Try different prompt formats to see which works best
|
| 148 |
-
4. Experiment with temperature and top_p to find optimal settings
|
| 149 |
-
5. Document which prompts work well as candidates for fine-tuning
|
| 150 |
-
""")
|
| 151 |
|
| 152 |
# Launch the demo
|
| 153 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import json
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
|
| 6 |
# Load the Qwen2 0.5B model
|
|
|
|
| 13 |
trust_remote_code=True
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# Predefined game data in compressed formats
|
| 17 |
+
PREDEFINED_GAMES = {
|
| 18 |
+
"rps_simple": {
|
| 19 |
+
"description": "Rock-Paper-Scissors (Simple Format)",
|
| 20 |
+
"data": {
|
| 21 |
+
"game_type": "rps",
|
| 22 |
+
"encoding": {"rock": 0, "paper": 1, "scissors": 2},
|
| 23 |
+
"result_encoding": {"ai_win": 0, "player_win": 1, "tie": 2},
|
| 24 |
+
"rounds": [
|
| 25 |
+
{"round": 1, "player": 0, "ai": 2, "result": 1},
|
| 26 |
+
{"round": 2, "player": 1, "ai": 1, "result": 2},
|
| 27 |
+
{"round": 3, "player": 2, "ai": 0, "result": 0},
|
| 28 |
+
{"round": 4, "player": 0, "ai": 0, "result": 2},
|
| 29 |
+
{"round": 5, "player": 1, "ai": 0, "result": 1},
|
| 30 |
+
{"round": 6, "player": 2, "ai": 2, "result": 2},
|
| 31 |
+
{"round": 7, "player": 0, "ai": 1, "result": 0},
|
| 32 |
+
{"round": 8, "player": 1, "ai": 2, "result": 0},
|
| 33 |
+
{"round": 9, "player": 2, "ai": 1, "result": 1},
|
| 34 |
+
{"round": 10, "player": 0, "ai": 2, "result": 1}
|
| 35 |
+
],
|
| 36 |
+
"summary": {"player_wins": 4, "ai_wins": 3, "ties": 3}
|
| 37 |
+
}
|
| 38 |
+
},
|
| 39 |
+
"rps_numeric": {
|
| 40 |
+
"description": "Rock-Paper-Scissors (Compressed Numeric Format)",
|
| 41 |
+
"data": {
|
| 42 |
+
"rules": "RPS: 0=Rock,1=Paper,2=Scissors. Result: 0=AI_win,1=Player_win,2=Tie",
|
| 43 |
+
"rounds": [[1,0,2,1],[2,1,1,2],[3,2,0,0],[4,0,0,2],[5,1,0,1],[6,2,2,2],[7,0,1,0],[8,1,2,0],[9,2,1,1],[10,0,2,1]],
|
| 44 |
+
"score": {"P": 4, "AI": 3, "Tie": 3}
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# Predefined prompt templates
|
| 50 |
+
PROMPT_TEMPLATES = {
|
| 51 |
+
"basic_analysis": "Who is winning right now? What patterns do you notice in the player's choices?",
|
| 52 |
+
"prediction": "Based on the player's past choices, predict what the player will choose in the next round. Explain your reasoning.",
|
| 53 |
+
"strategy": "What strategy should the AI use to improve its win rate? Provide specific recommendations.",
|
| 54 |
+
"pattern_analysis": "Analyze the frequency of each choice (rock, paper, scissors) made by the player. Is there a dominant pattern?",
|
| 55 |
+
"structured_analysis": "Provide a structured analysis with these sections: 1) Current winner, 2) Player choice patterns, 3) AI performance, 4) Recommended strategy for AI."
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Prompt formatters
|
| 59 |
+
def format_rps_simple(game_data):
|
| 60 |
+
"""Format the RPS data in a simple way that's easy for small models to understand"""
|
| 61 |
+
game = game_data["data"]
|
| 62 |
+
|
| 63 |
+
# Create a mapping for move names
|
| 64 |
+
move_names = {0: "Rock", 1: "Paper", 2: "Scissors"}
|
| 65 |
+
result_names = {0: "AI wins", 1: "Player wins", 2: "Tie"}
|
| 66 |
+
|
| 67 |
+
# Initialize counters for frequency analysis
|
| 68 |
+
player_moves = {"Rock": 0, "Paper": 0, "Scissors": 0}
|
| 69 |
+
|
| 70 |
+
# Format each round in a simple way
|
| 71 |
+
formatted_data = "Game: Rock-Paper-Scissors\n"
|
| 72 |
+
formatted_data += "Format explanation: [Round#, Player move, AI move, Result]\n"
|
| 73 |
+
formatted_data += "Move codes: 0=Rock, 1=Paper, 2=Scissors\n"
|
| 74 |
+
formatted_data += "Result codes: 0=AI wins, 1=Player wins, 2=Tie\n\n"
|
| 75 |
+
|
| 76 |
+
formatted_data += "Game Data:\n"
|
| 77 |
+
for round_data in game["rounds"]:
|
| 78 |
+
r_num = round_data["round"]
|
| 79 |
+
p_move = round_data["player"]
|
| 80 |
+
ai_move = round_data["ai"]
|
| 81 |
+
result = round_data["result"]
|
| 82 |
+
|
| 83 |
+
# Update player move counter
|
| 84 |
+
player_moves[move_names[p_move]] += 1
|
| 85 |
+
|
| 86 |
+
# Format as [round, player, ai, result]
|
| 87 |
+
formatted_data += f"[{r_num}, {p_move}, {ai_move}, {result}] # R{r_num}: Player {move_names[p_move]}, AI {move_names[ai_move]}, {result_names[result]}\n"
|
| 88 |
+
|
| 89 |
+
# Add summary statistics
|
| 90 |
+
formatted_data += "\nSummary:\n"
|
| 91 |
+
formatted_data += f"Player wins: {game['summary']['player_wins']}\n"
|
| 92 |
+
formatted_data += f"AI wins: {game['summary']['ai_wins']}\n"
|
| 93 |
+
formatted_data += f"Ties: {game['summary']['ties']}\n\n"
|
| 94 |
+
|
| 95 |
+
# Add player move frequencies
|
| 96 |
+
formatted_data += "Player move frequencies:\n"
|
| 97 |
+
for move, count in player_moves.items():
|
| 98 |
+
formatted_data += f"{move}: {count} times ({count*10}%)\n"
|
| 99 |
+
|
| 100 |
+
return formatted_data
|
| 101 |
+
|
| 102 |
+
def format_rps_numeric(game_data):
|
| 103 |
+
"""Format the RPS data in a highly compressed numeric format"""
|
| 104 |
+
game = game_data["data"]
|
| 105 |
+
|
| 106 |
+
formatted_data = "RPS Game Data (compressed format)\n"
|
| 107 |
+
formatted_data += f"Rules: {game['rules']}\n\n"
|
| 108 |
+
|
| 109 |
+
# Format all rounds on a single line
|
| 110 |
+
rounds_str = ",".join([str(r) for r in game['rounds']])
|
| 111 |
+
formatted_data += f"Rounds: {rounds_str}\n\n"
|
| 112 |
+
|
| 113 |
+
# Add score summary
|
| 114 |
+
formatted_data += f"Score: Player={game['score']['P']} AI={game['score']['AI']} Ties={game['score']['Tie']}\n"
|
| 115 |
+
|
| 116 |
+
return formatted_data
|
| 117 |
+
|
| 118 |
+
# Format selectors
|
| 119 |
+
FORMAT_FUNCTIONS = {
|
| 120 |
+
"rps_simple": format_rps_simple,
|
| 121 |
+
"rps_numeric": format_rps_numeric
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
def generate_response(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
| 125 |
"""Generate a response from the Qwen2 model based on the input prompt."""
|
| 126 |
|
|
|
|
| 147 |
return response.strip()
|
| 148 |
|
| 149 |
def process_input(
|
| 150 |
+
game_format,
|
| 151 |
+
prompt_template,
|
| 152 |
+
custom_prompt,
|
| 153 |
+
use_custom_prompt,
|
| 154 |
+
system_prompt,
|
| 155 |
max_length,
|
| 156 |
temperature,
|
| 157 |
top_p
|
| 158 |
):
|
| 159 |
+
"""Process the input and generate a response from the model."""
|
| 160 |
|
| 161 |
+
# Get the selected game data and format it
|
| 162 |
+
game_data = PREDEFINED_GAMES[game_format]
|
| 163 |
+
formatted_game_data = FORMAT_FUNCTIONS[game_format](game_data)
|
| 164 |
|
| 165 |
+
# Determine which prompt to use
|
| 166 |
+
prompt_text = custom_prompt if use_custom_prompt else PROMPT_TEMPLATES[prompt_template]
|
| 167 |
+
|
| 168 |
+
# Create the final prompt with optional system prompt
|
| 169 |
+
if system_prompt:
|
| 170 |
+
final_prompt = f"{system_prompt}\n\n{formatted_game_data}\n\n{prompt_text}"
|
| 171 |
+
else:
|
| 172 |
+
final_prompt = f"{formatted_game_data}\n\n{prompt_text}"
|
| 173 |
|
| 174 |
# Generate response from the model
|
| 175 |
response = generate_response(
|
|
|
|
| 184 |
# Create the Gradio interface
|
| 185 |
with gr.Blocks() as demo:
|
| 186 |
gr.Markdown("# Qwen2 0.5B Game Analysis Tester")
|
| 187 |
+
gr.Markdown("Test how the Qwen2 0.5B model responds to different game data formats and prompts")
|
| 188 |
|
| 189 |
with gr.Row():
|
| 190 |
with gr.Column():
|
| 191 |
+
# Game data selection
|
| 192 |
+
game_format = gr.Dropdown(
|
| 193 |
+
choices=list(PREDEFINED_GAMES.keys()),
|
| 194 |
+
value="rps_simple",
|
| 195 |
+
label="Game Data Format"
|
| 196 |
)
|
| 197 |
|
| 198 |
+
# System prompt (optional)
|
| 199 |
+
system_prompt = gr.Textbox(
|
| 200 |
+
label="System Prompt (Optional)",
|
| 201 |
+
placeholder="e.g., You are an expert game analyzer. Your task is to analyze game patterns and provide insights.",
|
| 202 |
+
lines=2
|
| 203 |
)
|
| 204 |
|
| 205 |
+
# Prompt selection
|
| 206 |
+
with gr.Row():
|
| 207 |
+
prompt_template = gr.Dropdown(
|
| 208 |
+
choices=list(PROMPT_TEMPLATES.keys()),
|
| 209 |
+
value="basic_analysis",
|
| 210 |
+
label="Prompt Template"
|
| 211 |
+
)
|
| 212 |
+
use_custom_prompt = gr.Checkbox(
|
| 213 |
+
label="Use Custom Prompt",
|
| 214 |
+
value=False
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
custom_prompt = gr.Textbox(
|
| 218 |
+
label="Custom Prompt (if enabled above)",
|
| 219 |
+
placeholder="Enter your custom prompt here",
|
| 220 |
+
lines=2
|
| 221 |
)
|
| 222 |
|
| 223 |
+
# Generation parameters
|
| 224 |
with gr.Row():
|
| 225 |
max_length = gr.Slider(
|
| 226 |
minimum=50,
|
| 227 |
+
maximum=512,
|
| 228 |
value=256,
|
| 229 |
step=1,
|
| 230 |
label="Max Response Length"
|
|
|
|
| 244 |
label="Top P"
|
| 245 |
)
|
| 246 |
|
| 247 |
+
# Generate button
|
| 248 |
submit_btn = gr.Button("Generate Response")
|
| 249 |
|
| 250 |
with gr.Column():
|
| 251 |
+
# Display final prompt and model response
|
| 252 |
final_prompt_display = gr.Textbox(
|
| 253 |
label="Final Prompt Sent to Model",
|
| 254 |
+
lines=12
|
| 255 |
)
|
| 256 |
response_display = gr.Textbox(
|
| 257 |
label="Model Response",
|
| 258 |
+
lines=12
|
| 259 |
)
|
| 260 |
+
|
| 261 |
+
# Tips for using the interface
|
| 262 |
+
gr.Markdown("""
|
| 263 |
+
## Testing Tips
|
| 264 |
+
|
| 265 |
+
- The **Game Data Format** determines how game information is presented to the model
|
| 266 |
+
- The **System Prompt** can be used to provide context or role instructions
|
| 267 |
+
- **Prompt Templates** offer pre-made queries, or you can use a custom prompt
|
| 268 |
+
- Experiment with **Temperature** (higher = more creative/random, lower = more focused)
|
| 269 |
+
- Document successful prompts for fine-tuning datasets
|
| 270 |
+
""")
|
| 271 |
|
| 272 |
+
# Handle button click
|
| 273 |
submit_btn.click(
|
| 274 |
process_input,
|
| 275 |
inputs=[
|
| 276 |
+
game_format,
|
| 277 |
+
prompt_template,
|
| 278 |
+
custom_prompt,
|
| 279 |
+
use_custom_prompt,
|
| 280 |
+
system_prompt,
|
| 281 |
max_length,
|
| 282 |
temperature,
|
| 283 |
top_p
|
| 284 |
],
|
| 285 |
outputs=[final_prompt_display, response_display]
|
| 286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
# Launch the demo
|
| 289 |
demo.launch()
|