practica3 / app.py
Rubén Escobedo
Update app.py
f5e4284
raw
history blame
1.55 kB
from fastai.vision.all import *
import gradio as gr
import torchvision.transforms as transforms
# Cargamos el learner
learn = load_learner('best_model.pkl')
# Definimos las etiquetas de nuestro modelo
labels = learn.dls.vocab
def transform_image(image, device):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
def mask_to_img(mask):
mask[mask == 1] = 255 # grape
mask[mask == 2] = 150 # leaves
mask[mask == 3] = 74 # pole
mask[mask == 4] = 25 # wood
mask=np.reshape(mask,(480,640))
return mask
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = learn.cpu()
model.eval()
image = transforms.Resize((480,640))(img)
tensor = transform_image(image, device)
model.to(device)
with torch.no_grad():
outputs = model(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask = mask_to_img(mask)
return Image.fromarray(mask.astype('uint8'))
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape=(128,128)),examples=['1002_5866_6582.jpg','1038_31199_2068.jpg']).launch(share=False)