Rub茅n Escobedo
commited on
Commit
路
61ad881
1
Parent(s):
98f448a
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,19 @@
|
|
1 |
from fastai.vision.all import *
|
2 |
from icevision.all import *
|
3 |
-
import PIL
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Cargamos el learner
|
7 |
-
learn = load_learner('model.pth')
|
8 |
-
|
9 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
10 |
def predict(img):
|
11 |
-
class_map = ['Kangaroo']
|
12 |
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn, num_classes=len(class_map))
|
13 |
state_dict = torch.load('model.pth')
|
14 |
model.load_state_dict(state_dict)
|
15 |
|
16 |
-
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(
|
17 |
|
18 |
-
img =
|
19 |
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
20 |
return pred_dict['img']
|
21 |
|
22 |
# Creamos la interfaz y la lanzamos.
|
23 |
-
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.
|
|
|
1 |
from fastai.vision.all import *
|
2 |
from icevision.all import *
|
|
|
3 |
import gradio as gr
|
4 |
|
|
|
|
|
|
|
5 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
6 |
def predict(img):
|
7 |
+
class_map = ClassMap(['Kangaroo'])
|
8 |
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn, num_classes=len(class_map))
|
9 |
state_dict = torch.load('model.pth')
|
10 |
model.load_state_dict(state_dict)
|
11 |
|
12 |
+
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
|
13 |
|
14 |
+
img = PILImage.create(img)
|
15 |
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
16 |
return pred_dict['img']
|
17 |
|
18 |
# Creamos la interfaz y la lanzamos.
|
19 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape=(128, 128)),examples=['kangarooc.jpg']).launch(share=False)
|